
CMPUT 267 Basics of 
Machine Learning



Recap

 

• Please read FAQ document on course webpage. 

• Course information at https://nidhihegde.github.io/mlbasics 

• eClass: https://eclass.srv.ualberta.ca/course/view.php?id=95783 

• Readings from online https://marthawhite.github.io/mlbasics/notes.pdf 

• Assignment 1 will be released by the end of the week. 

• First participation and readings question-exercise will be released next 
Tuesday.

This class is about understanding machine learning techniques by 
understanding their basic mathematical underpinnings

https://nidhihegde.github.io/mlbasics
https://eclass.srv.ualberta.ca/course/view.php?id=95783
https://marthawhite.github.io/mlbasics/notes.pdf


Probability Theory

CMPUT 267: Basics of Machine Learning 
 

Today’s slide contents re-used from Martha White and James Wright



Outline

1. Probabilities 

2. Defining Distributions 

3. Random Variables



Why Probabilities?
Even if the world is completely deterministic, outcomes can look random 
(why?) 

Example: A high-tech gumball machine behaves according to 
,  

where  = has candy and  = battery charged. 
• You can only see if it has candy 
• From your perspective, when , sometimes candy is output, 

sometimes it isn't 
• It looks stochastic, because it depends on the hidden input 

f(x1, x2) = output candy if x1 & x2
x1 x2

x1 = 1

x2



Measuring Uncertainty
• Probability is a way of measuring uncertainty 

• We assign a number between 0 and 1 to events (hypotheses): 

• 0 means absolutely certain that statement is false 

• 1 means absolutely certain that statement is true 

• Intermediate values mean more or less certain 

• Probability is a measurement of uncertainty, not truth 

• A statement with probability .75 is not "mostly true" 

• Rather, we believe it is more likely to be true than not



Example
• Let’s think about estimating the average height of a person in the world 

• There is a true population mean  (say  = 165.2 cm) 

• which can be computed by averaging the heights of every person 

• We can estimate this true mean using data 

• e.g., compute a sample average  from a subpopulation by randomly sampling 1000 
people from around the whole world (say  = 166.3 cm) 

• We can also reason about our belief over plausible estimates  of  

• e.g., we can maintain a distribution over plausible , such as saying , 
, , 

h h

h̄
h̄

h̄ h

h̄ p(h̄ = 160) = 0.1
p(h̄ = 163) = 0.3 p(h̄ = 165) = 0.5 p(h̄ = 167) = 0.1



Prerequisites Check
• Derivatives 

• Rarely integration 
• Partial derivatives 

• Vectors, dot-products, matrices 

• Set notation 
• Complement  of a set, union  of sets, intersection of sets  
• Set of sets, power set  

• Basics of probability.  (We will refresh today)

Ac A ∪ B A ∩ B
𝒫(A)



Terminology Refresher
• If you are unsure, notation sheet in the notes is a good starting point 

• Set notation 
• Curly brackets for discrete sets, e.g , ,   
• Square brackets for continuous intervals, e.g.,  ,  
• Subset notation  and the set complement   
• Union of sets , intersection of sets  
• Power set , e.g, ,  

• Scalar  and vector (array) is   for some integer 

{a, b, c} {1,2,3,4,5} {−2.1,6.5}
[−10,10] [3.2,7.1]

A ⊂ Ω Ac = Ω\A
A ∪ B A ∩ B

𝒫(A) A = {1,2} 𝒫(A) = {∅, {1}, {2}, {1,2}}

x ∈ ℝ x ∈ ℝd d ∈ {2,3,…}



Terminology - cont’d
• Countable: A set whose elements can be assigned an integer index 

• The integers themselves 
• Any finite set, e.g.,  
• We'll sometimes say discrete, even though that's a little imprecise 

• Uncountable: Sets whose elements cannot be assigned an integer index 
• Real numbers  
• Intervals of real numbers, e.g., ,  
• Sometimes we'll say continuous

{0.1,2.0,3.7,4.123}

ℝ
[0,1] (−∞,0)



Outcomes and Events

All probabilities are defined with respect to a measurable space  of 
outcomes and events: 

•  is the sample space: The set of all possible outcomes 

•  is the event space: A set of subsets of  satisfying two key 
properties

(Ω, ℰ)

Ω

ℰ ⊆ 𝒫(Ω) Ω



Examples of Discrete & Continuous 
Sample Spaces and Events

Continuous (uncountable) outcomes 

 

 

 

Ω = [0,1]

Ω = ℝ

Ω = ℝk

Discrete (countable) outcomes 

 

 

 

Ω = {1,2,3,4,5,6}

Ω = {person, robot, camera, TV, …}

Ω = ℕ



Outcomes and Events

All probabilities are defined with respect to a measurable space  of 
outcomes and events: 

•  is the sample space: The set of all possible outcomes 

•  is the event space: A set of subsets of  satisfying 

1.  

2.

(Ω, ℰ)

Ω

ℰ ⊆ 𝒫(Ω) Ω
A ∈ ℰ ⟹ Ac ∈ ℰ

A1, A2, … ∈ ℰ ⟹
∞

⋃
i=1

Ai ∈ ℰ



Event Spaces

1. A collection of outcomes (e.g., either a 2 or a 6 were rolled) is an event. 
2. If we can measure that an event has occurred, then we should also be able to 

measure that the event has not occurred; i.e., its complement is measurable. 
3. If we can measure two events separately, then we should be able to tell if one 

of them has happened; i.e., their union should be measurable too.

Definition: 
A set  is an event space if it satisfies 

1.  

2.

ℰ ⊆ 𝒫(Ω)
A ∈ ℰ ⟹ Ac ∈ ℰ

A1, A2, … ∈ ℰ ⟹
∞

⋃
i=1

Ai ∈ ℰ



Discrete vs. Continuous 
Sample Spaces

Continuous (uncountable) outcomes 

 

 

 

 

Typically:  ("Borel field") 

Note:  not 

Ω = [0,1]

Ω = ℝ

Ω = ℝk

ℰ = {∅, [0,0.5], (0.5,1.0], [0,1]}

ℰ = B(Ω)

𝒫(Ω)

Discrete (countable) outcomes 

 

 

 

 

Typically:  

Question: 
?

Ω = {1,2,3,4,5,6}

Ω = {person, woman, man, camera, TV, …}

Ω = ℕ

ℰ = {∅, {1,2}, {3,4,5,6}, {1,2,3,4,5,6}}

ℰ = 𝒫(Ω)

ℰ = {{1}, {2}, {3}, {4}, {5}, {6}}



Exercise
• Write down the power set of {1, 2, 3} 

• More advanced: Why is the power set a valid event space? Hint: Check the 
two properties

Definition: 
A non-empty set  is an event space if it satisfies 

1.  

2.

ℰ ⊆ 𝒫(Ω)
A ∈ ℰ ⟹ Ac ∈ ℰ

A1, A2, … ∈ ℰ ⟹
∞

⋃
i=1

Ai ∈ ℰ



Exercise answer
•  

•

Ω = {1,2,3}

𝒫(Ω) = {∅, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}

• Proof that the power set satisfies the two properties 

• Take any  (e.g., ). Then  is a 
subset of , and so  since the power set contains all subsets 

• Take any . Then , and so   

• More generally, for an infinite union, see: https://proofwiki.org/wiki/
Power_Set_is_Closed_under_Countable_Unions

A ∈ 𝒫(Ω) A = {1} or A = {1,2} Ac = Ω\A
Ω Ac ∈ 𝒫(Ω)

A, B ∈ 𝒫(Ω) A ∪ B ⊂ Ω A ∪ B ∈ 𝒫(Ω)

A set  is an event space if it satisfies 

1.  

2.

ℰ ⊆ 𝒫(Ω)
A ∈ ℰ ⟹ Ac ∈ ℰ

A1, A2, … ∈ ℰ ⟹
∞

⋃
i=1

Ai ∈ ℰ

https://proofwiki.org/wiki/Power_Set_is_Closed_under_Countable_Unions
https://proofwiki.org/wiki/Power_Set_is_Closed_under_Countable_Unions
https://proofwiki.org/wiki/Power_Set_is_Closed_under_Countable_Unions


Axioms

If  is a probability measure over , then  is a probability space.P (Ω, ℰ) (Ω, ℰ, P)

Definition:  
Given a measurable space , any function  satisfying 

1. unit measure: , and 

2. -additivity:  for any countable sequence 

 where  whenever  

is a probability measure (or probability distribution).

(Ω, ℰ) P : ℰ → [0,1]

P(Ω) = 1

σ P (
∞

⋃
i=1

Ai) =
∞

∑
i=1

P(Ai)

A1, A2, … ∈ ℰ Ai ∩ Aj = ∅ i ≠ j



Defining a Distribution
Example: 

 

 

 

where .

Ω = {0,1}

ℰ = {∅, {0}, {1}, Ω}

P =

1 − α if A = {0}
α if A = {1}
0 if A = ∅
1 if A = Ω

α ∈ [0,1]

Questions: 

1. Do you recognize this 
distribution? 

2. How should we choose  
in practice? 

a. Can we choose an 
arbitrary function? 

b. How can we guarantee 
that all of the constraints 
will be satisfied?

P



We will define distributions using PMFs and PDFs

PMF:  probability mass function 

PDF:  probability density function



Probability Mass Functions (PMFs)

 

• For a discrete sample space, instead of defining  directly, we can define a 
probability mass function . 

•  gives a probability for outcomes instead of events 

•
The probability for any event  is then defined as .

Definition: Given a discrete sample space  and event space 
, any function  satisfying  is  

a probability mass function.

Ω
ℰ = 𝒫(Ω) p : Ω → [0,1] ∑

ω∈Ω

p(ω) = 1

P
p : Ω → [0,1]

p

A ∈ ℰ P(A) = ∑
ω∈Ω

p(ω)



Example: PMF for a Fair Die
A categorical distribution is a distribution over a finite outcome space, 
where the probability of each outcome is specified separately. 

Example: Fair Die 

 

 

Ω = {1,2,3,4,5,6}

p(ω) =
1
6

1 1/6
2 1/6
3 1/6
4 1/6
5 1/6
6 1/6

Questions: 

1. What is a possible event?  
What is its probability? 

2. What is the event space?

ω p(ω)



Moving to Boolean Terminology with 
Random Variables

Example: Suppose we observe both a die's number, and where it lands. 

 

We might want to think about the probability that we get a large number, 
without thinking about where it landed.   

 

Let  = number that comes up. We could ask about  or  

This notation is simpler to write than using the event notation above 

 would be written instead of 

Ω = {(left,1), (right,1), (left,2), (right,2), …, (right,6)}

P({ω ∈ Ω | ω2 = 3})

X P(X = 3) P(X ≥ 4)

P(X = 3) P({ω ∈ Ω | ω2 = 3})



Random Variables, Formally
Given a probability space , a random variable is a function 

 (where  is a new outcome space), satisfying 

. 

It follows that . 

Example: Let  be a population of people, , 
and  = height in cm, and the event . 

.

(Ω, ℰ, P)
X : Ω → 𝒳 𝒳

{ω ∈ Ω ∣ X(ω) ∈ A} ∈ ℰ ∀A ∈ B(𝒳)

PX(A) = P({ω ∈ Ω ∣ X(ω) ∈ A})

Ω ω = (height, age, …, location)
X(ω) A = [150,170]

P(X ∈ A) = P(150 ≤ X ≤ 170) = P({ω ∈ Ω : X(ω) ∈ A})



RVs are intuitive

• All the probability rules remain the same, since RVs are a mapping to create 
a new outcome space, event space and probabilities  

• The notation may look onerous, but they simply formalize something we do 
naturally: specify the variable we care about, knowing it is defined by a more 
complex underlying distribution 

• We have really already been talking about RVs 
• e.g., for dice outcome, event , X = A = {5,6} P(A) = P(X ≥ 4)



Random Variables and Events

• A Boolean expression involving random variables defines an event: 
        E.g.,  

• Similarly, every event can be understood as a Boolean random variable: 

         

• From this point onwards, we will exclusively reason in terms of random 
variables rather than probability spaces.

P(X ≥ 4) = P({ω ∈ Ω ∣ X(ω) ≥ 4})

Y = {1 if event A occurred
0 otherwise.



Revisiting the Fair Die PMF
Example: Fair Die 

 

 

𝒳 = {1,2,3,4,5,6}

p(x) =
1
6

ωp(ω)

1 1/6

2 1/6
3 1/6

4 1/6

5 1/6
6 1/6

Questions: 

1. What is a possible event?  
What is its probability? 

2. What is the event space?

p({3,4}) =
1
3

x p(x)

Answer: event space and probabilities are the same,  
but we write the probabilistic question using booleans 

p(3 ≤ X ≤ 4) =
1
3

 or p(X ∈ {3,4}) =
1
3



Example: Using a PMF
• Suppose that you recorded your commute time (in minutes) every day for a 

year (i.e., 365 recorded times). 

• The random variable is  with outcomes  

• Question: How do you get ? 

• Question: How is  useful? 

• Question: How do you compute 
 ?

T t ∈ {4,5,6,7,…,25}

p(t)

p(t)

p(10 ≤ T ≤ 13)
.05

.10

.15

Gamma(31.3, 0.352)

.20

.25

6 8 10 184 12 14 16 t20 22 24



Example: Using a PMF
• Suppose that you recorded your commute time (in minutes) every day for a 

year (i.e., 365 recorded times). 

• The random variable is  with outcomes  

• Question: How do you get ? (Answer: count and normalize) 

• Question: How is  useful? 
• We can take mode as prediction 

• Question: How do you compute 
 ? 

•
Answer:

T t ∈ {4,5,6,7,…,25}

p(t)

p(t)

p(10 ≤ T ≤ 13)

∑
t∈{10,11,12}

p(t)
.05

.10

.15

Gamma(31.3, 0.352)

.20

.25

6 8 10 184 12 14 16 t20 22 24

This PMF is called a categorical distribution, with 21 categories (table of probabilities) 



Useful PMFs: Bernoulli

A Bernoulli distribution is a special case of a categorical distribution in 
which there are only two outcomes.  It has a single parameter . 

 ,  

 

α ∈ (0,1)

Ω = {T, F} Ω = {H, T}

p(ω) = {α if ω = T
1 − α if ω = F .

Alternatively:  

  for 

Ω = {0,1}

p(k) = αk(1 − α)1−k k ∈ {0,1}



Useful PMFs: Poisson
A Poisson distribution is a distribution over the non-negative integers.   
It has a single parameter . 

E.g., number of  calls received by a call centre in an hour,  
number of letters received per day. 

 

 

λ ∈ (0,∞)

p(k) =
λke−λ

k!

(Image: Wikipedia)

Questions: 

1. Could we define this with a 
table instead of an equation? 

2. How can we check whether 
this is a valid PMF? 

3.  real-valued, but outcomes are 
discrete. What might be the 
mode (most likely outcome)?

λ



Useful PMFs: Poisson
A Poisson distribution is a distribution over the non-negative integers.   
It has a single parameter . 

 

 

λ ∈ (0,∞)

p(k) =
λke−λ

k!

1. Could we define this with a table instead of an 
equation? 
- No because the outcome space is infinite  

2. How can we check whether this is a valid PMF? 

- Check if  

3.  real-valued, but outcomes are discrete. What 
might be the mode (most likely outcome)? 
- Mean is , may not correspond to any outcome 
- Two modes, 

∞

∑
k=0

p(k) = 1

λ

λ
⌈λ⌉ − 1,⌊λ⌋

(Image: Wikipedia)



Commute Times Again
• Question: Could we use a Poisson distribution for commute times 

(instead of a categorical distribution)? 

• Question: What would be the benefit of using a Poisson distribution?

.05

.10

.15

Gamma(31.3, 0.352)

.20

.25

6 8 10 184 12 14 16 t20 22 24

p(k) =
λke−λ

k!
p(4) = 1/365, p(5) = 2/365, p(6) = 4/365, …



.05

.10

.15

Gamma(31.3, 0.352)

.20

.25

6 8 10 184 12 14 16 t20 22 24

Continuous Commute Times
• It never actually takes exactly 12 minutes; I rounded each observation to the 

nearest integer number of minutes. 
• Actual data was 12.345 minutes, 11.78213 minutes, etc.



.05

.10

.15

Gamma(31.3, 0.352)

.20

.25

6 8 10 184 12 14 16 t20 22 24

Continuous Commute Times
• It never actually takes exactly 12 minutes; I rounded each observation to the 

nearest integer number of minutes. 
• Actual data was 12.345 minutes, 11.78213 minutes, etc. 

• Question: Could we use a Poisson distribution to predict the exact 
commute time (rather than the nearest number of minutes)?  Why?



Using Histograms
Consider the continuous commuting example again, with observations 12.345 
minutes, 11.78213 minutes, etc. 

 

• Question: What is the random variable? 

• Question: How could we turn our observations into a histogram?

.05

.10

.15

Gamma(31.3, 0.352)

.20

.25

6 8 10 184 12 14 16 t20 22 24



Probability Density Functions (PDFs)

 

• For a continuous sample space, instead of defining  directly, we can define 
a probability density function . 

• The probability for any event  is then defined as  

.

Definition: Given a continuous sample space  and event space 

, any function  satisfying  is  

a probability density function.

Ω
ℰ = B(Ω) p : Ω → [0,∞) ∫Ω

p(ω)dω = 1

P
p : Ω → [0,∞)

A ∈ ℰ

P(A) = ∫A
p(ω)dω



Useful PDFs: Uniform
A uniform distribution is a distribution over a real interval.  It has two 
parameters:  and . 

 

 

Question: Does  have to be bounded?

a b

Ω = [a, b]

p(ω) = {
1

b − a if a ≤ ω ≤ b,
0 otherwise.

Ω

0 ba



Exercise: Check that the uniform 
pdf satisfies the required properties

Recall that the antiderivative of 1 is x, because the derivative of x is 1 

∫
b

a
p(x)dx = ∫

b

a

1
b − a

dx

=
1

b − a ∫
b

a
dx =

1
b − a

x |b
a

=
1

b − a
(b − a) = 1



Useful PDFs: Gaussian
A Gaussian distribution is a distribution over the real numbers.  It has two 
parameters:  and . 

 

 

where  

Also called a normal distribution and 
written 

μ ∈ ℝ σ ∈ ℝ+

Ω = ℝ

p(ω) =
1

2πσ2
exp (−

1
2σ2

(ω − μ)2)
exp(x) = ex

𝒩(μ, σ2)



Useful PDFs: Exponential
An exponential distribution is a distribution over the positive reals.  It has one 
parameter . 

 

 

λ > 0

Ω = ℝ

p(ω) = λ exp(−λω)
1 is here!



Why can the density be above 1?

Consider an interval event , for small . 

. 

•  can be big, because  can be very small 
• In particular,  can be bigger than 1 

• But  must be less than or equal to 1

A = [x, x + Δx] Δx

P(A) = ∫
x+Δx

x
p(ω) dω

≈ p(x)Δx

p(x) Δx
p(x)

P(A)



PMFs vs PDFs
1. When sample space  is discrete: 

• Singleton event:  for  

2. When sample space  is continuous: 
• Example: Stopping time for a car with  
• Question: What is the probability that the stopping time is 

exactly 3.14159? 

 

• More reasonable: Probability that stopping time is between 3 to 3.5.

Ω
P({ω}) = p(ω) ω ∈ Ω

Ω
Ω = [3,12]

P({3.14159}) = ∫
3.14159

3.14159
p(ω)dω

P(A) = ∫A
p(ω)dω

P(A) = ∑
ω∈Ω

p(ω)



Recall Integration



Integration to give the probability of 
an event

• Imagine the PDF looks like the following concave function

Imagine we have a Gaussian distribution

""

Let's pretend we
discretized to get a PMF

y
= : for xe (i-hi ]

0.05
-
-

-

- ply
-

- L ) -

- o -
05

htt
.

Iii: :c: T.si:c. "
TT similar to

" '-0113
. Y

-

- I

prey ← Eh 2,3 .
. . .

, 103 ) = E PY )

X
YEA

Both reflect density or mass in

'

a region .

simian Inn!!?¥¥÷.

emit:*p(0 ≤ X ≤ 10) = ∫
10

0
p(x)dx

Area under the curve reflects the probability of seeing an outcome in that region 



Example comparing  
integration and summation



Exercise

• Imagine I asked you to tell me the probability that my birthday is on February 
10 or July 9.  

• What is the outcome space and what is the event for this question? 
• Would we use a PMF or PDF to model these probabilities? 

• Imagine I asked you to tell me the probability that the Uber would be here in 
between 3-5 minutes 

• What is the outcome space and what is the event for this question? 
• Would we use a PMF or PDF to model these probabilities?



Summary
• Probabilities are a means of quantifying uncertainty 

• A probability distribution is defined on a measurable space consisting of a 
sample space and an event space. 

• Discrete sample spaces (and random variables) are defined in terms of 
probability mass functions (PMFs) 

• Continuous sample spaces (and random variables) are defined in terms of 
probability density functions (PDFs) 

• Random variables are more convenient than operating directly on 
probability spaces


