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Announcements

Please read FAQ document on course webpage.

Course information at https://nidhihegde.github.io/mlbasics

Assignment due dates

A Office hours - updated

Participation - Reading Exercises
* on eClass;
e open for a 48 hour period; one hour to complete

* first one is a practise one - just a pdf, not as a quiz on eClass

* First one that counts open Menrday-eloses{auertuesday++693-pm-Tuesday 10am and

closes Thursday 10am, as mentioned on eClass, and you have 60 minutes to complete it.



https://nidhihegde.github.io/mlbasics
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Recap

Probabilities are a means of quantifying uncertainty

The probability space models an experiment, or a real world process.

The sample space €2 : the set of all possible outcomes of the experiment.

The event space & : & C IP(L), the space of potential results of the experiment.

A probability distribution is defined on a measurable space consisting of a sample space
and an event space. Any function P : & — [0,1] that is a probability measure.

A probability distribution is defined on a measurable space consisting of a sample space
and an event space.

Discrete sample spaces (and random variables) are defined in terms of probability mass
functions (PMFs)

Continuous sample spaces (and random variables) are defined in terms of probability
density functions (PDFs)



Discrete vs. Continuous
Sample Spaces

Discrete (countable) outcomes Continuous (uncountable) outcomes

Q=1{12345,6) Q =1[0,1]

() = {person, woman, man, camera, TV, ...} O = |

=N Q = RF

& =10, 11,2}, 13:45.61, 11,2.3:456011 & = (5,10,0.5],(0.5,1.0], [0,1])
Typically: & = SP(L2) Typically: & = B(Q) ("Borel field")

Question:
Note: not (L)

& =112}, 131,141,153}, 1617




Random Variables

Rather than referring to the probability space, we refer to probabilities on
guantities of interest.

Example: Suppose we observe both a die's number, and where it lands.

Q = {(left, 1), (right,1), (left,2), (right,2), ..., (right,6)}

We might want to t
thinking about whe

alls

< about the probability that we get a large number, without

e

it landed.

We could ask about P(X > 4), where X = the number that comes up.

Random variables are a way of reasoning about a complicated underlying
probabllity space in a more straightforward way.



Random Variables, rormally

Given a probability space (€2, &, P), a random variable is a function
X : Q= Ly (where 2y is some other outcome space), satisfying

iweQ|Xw)eA}l €& VA e B(y).
t follows that Py(A) = P(low € Q | X(w) € A}).

Example: Let €2 be a population of people, and X(w) = height, and
A = [5/1//,5/2//].

PXeEA)=P(51"<X<52")=P{w € Q: X(w) EA)).



Random Variables and Events

* A Boolean expression involving random variables defines an event:
E.g9., PX 2 4) = P(low € Q| X(w) 2 4})

e Similarly, every event can be understood as a Boolean random variable:

y — 1 if event A occurred
0 otherwise.

* From this point onwards, we will exclusively reason in terms of random
variables rather than probability spaces.




Example: Ristograms

Consider the continuous commuting example again, with observations 12.345
minutes, 11.78213 minutes, etc.

25
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e Question: \What is the random variable?

* Question: How could we turn our observations into a histogram?



What About Multiple Variables®

* 5o far, we've really been thinking about a single random variable at a time
o Straightforward to define multiple random variables on a single probability space

Example: Suppose we observe both a die's number, and where it lands.
Q = {(left,1), (right,1), (left,2), (right,2), ..., (right,6)}

X(w) = @, = number

Y(w) = {1 o= left} = ] if landed on left
0 otherwise.

P(Y=1)=P{o | X(w) =1})
PX>4ANY=1)=P({w | X(w) >24ANY(w)=1})



Joint Distribution

We typically model the interactions of different random variables.

Joint probability mass function: p(x,y) = P(X =x,Y = y)

> ) pey) =1

xXEX yeY

Example: 2 = {0,1} (young, old) and % = {0,1} (no arthritis, arthritis)

Y=0 Y=1
""" w_g PX=0Y=0)= P(X=0, Y=1)=
1/2 1/100




s this joint distribution valid®

Example: 2 = {0,1} (young, old) and % = {0,1} (no arthritis, arthritis)

P(X=0,Y=0) = P(X=0, Y=1) =

10/100  39/100

_ Exercise: Check f Z Z px,y) =1

x€{0,1} ye{0,1}

Y Y pCry) = 1/24+ 17100 + 1/10 +39/100 = 1
x€{0,1} ye{0,1}



Questions About Multiple Variables

Example: 2 = {0,1} (young, old) and % = {0,1} (no arthritis, arthritis)

=0 =1
""" weg PX=0Y=0)= P(X=0,Y=1)=
e e 17100
DY N\ - D(Y— 4
X=1 (X=1, Y=0) = PX=1, Y=1) =

* Are these two variables related at all? Or do they change independently?

* Given this distribution, can we determine the distribution over just Y*?

l.e.,

* [f we knew something about one variable, does that tell us sorr

OVeE
WE

what is P(Y = 1)? (marginal distribution)

" the other? E.g., if | know X = O (person is young), does t

ething abo

Ut the distribution

nat tell me 1

he prob. that person

Know is young has arthritis? (conditional probability P(Y =1 | X = 1))



Marginal Distribution for Y

p¥=0= Y px0)= Y  px0) p¥=1=Ypxh= Y  pl
x€EXL xe{young,old} x€EXL xe{young,old}
=0 =1
X=0 P(X=0,Y=0) P(X=0, Y=1)
More generically | :1/2:1/100 -----------
x=q PX=1,Y=0) PX=1,Y=1)
~ =1/10  =39/100

P = ) p@.y)

b= A



Back to our example

Example: 2 = {0,1} (young, old) and % = {0,1} (no arthritis, arthritis)

P(X=0,Y=0) = P(X=0, Y=1) =

10/100  39/100

_ Exercise: Compute marginal p(x) = Z p(x,y)
ye{0,1}



Back to our example (cont)

Example: 2 = {0,1} (young, old) and % = {0,1} (no arthritis, arthritis)

=O —
""" weg PX=0Y=0)= P(X=0,Y=1)=
. %0io00 17100
D (W — — — D (Y — — —
woq PXE1,Y=0)= PX=1,Y=1)=

10100 39/100

_ Exercise: Compute marginal p(x = 1) = Z p(x=1,y) =49/100,

y€{0,1}
px=0)=1—-px=1)=>51/100



Marginal distrioutions

e For two random variables X, Y,

_ Ifthey are discrete we have p(x) = Z p(x,y)
YEY

. If they are continuous we have p(x) = J p(x, y)dy
4

_ If X'is discrete and Y is continuous then p(x) = J p(x, y)dy
4

f X is continuous and Y is discrete then p(x) = Z p(x,y)
YEY



Marginal Distributions

A marginal distribution is defined for a subset of )_{ by summing or integrating

out the remaining variables. (We will often say that we are "marginalizing over"
or "marginalizing out" the remaining variables).

Discrete case: p(x) = 2 Z Z Z DXy s X s Xy s e es X)

XEXL | X € 1 X 1€y XEX

Continuous: p(x) = J

J J J P(X[s oo s X (5 Xip s oo es Xg) dXy...dX;_dX; ... dX,
AR A L

i—1 i+1 d

Question: Why do we write p for p(x;) and p(xy, ..., X;)?
 [hey can't be the same function, they have different domains!



Are these really the same function®

* No. Theyre not the same function.

* But they are derived from the same joint distribution.

» So for brevity we will write p(x, y), p(x) and p(y)

* Even though it would be more precise to write something like
p(x,y), py(x) and p(y)

* We can tell which function we're talking about from context (i.e., arguments)



PVIFs and PDEFs of Many Variaples

_>
In general, we can consider a d-dimensional random variable X = (X, ..., X;) with vector-

valued outcomes X = (X, ..., X,;), with each x; chosen from some .. Then,

Discrete case:
p: X XAy X ... XX ,;— [0,1]is a (joint) probability mass function if

Z Z Z P, X, .o xy) =1

XIESXI Xzeg‘z Xdeg‘d

Continuous case:
p: X XAy X ... XA ,;— [0,00)is a (joint) probability density function if

)L

2

[ p(xl’XZ’ '°°9xd) dxldX2...dxd — 1
VA

1 d



Rules of Probabillity Already Covered
the Multidimensional Case

Outcome spaceis X = XL | X X X ... X X,

Outcomes are multidimensional variables X =[xy, X5, . . . , X

Discrete case:
p . & — |0,1]is a (joint) probability mass function if Z p(x) =1
). (= A

Continuous case:

p . X — [0,00)is a (joint) probability density function ifJ p(xX)dx =1
VA

But useful to recognize that we have multiple variables



Conditional Distribution

Definition: Conditional probability distribution
PX=x,Y=Yy)
P(X = x)

PY=y|X=1x) =

This same equation will hold for the corresponding PDF or PMF:

px,y)
p(x)

piy | x) =

Question: if p(x, y) is small, does that imply that p(y | x) is small?



Visualizing the conaditional
distribution

P(X =young|Y =0) = P(X =young, Y =0)/P(Y =0) = (50/100)/(60/100) = 50/60



Chain Rule

-rom the definition of conditional probabillity:

p(y | x) _ PLey)
p(x)
= po | opey =28 0
p(x)
< p(y | x)p(x) = p(x,y)

This is called the Chain Rule.



Multiple Variable Chain Rule

The chain rule generalizes to multiple variables:

px,y,2) = px,y | 2pi) =px |y dpQy| 2)pk)

p(;,z)

Definition: Chain rule

d—1
Py, ..., X)) = p(xd)Hp(xi | X g - Xy)
i=1

d
— P(x1)HP(Xi | XiyeeeXi_1)
=2




The Order Does Not Matter

The RVs are not ordered, so we can write

px,y,z) = px |y, 2)p(y|2)p(2)
=px | y,2p|y)p(y)
=p(y | x,2)p(x| 2)p(2)
= p(Qy | x,2)p(z| x)p(x)
= p | x, y)p(y | x)p(x)
=p | x,y)px|y)p(y)

All of these probabllities are equal



Bayes Rule

-rom the chain rule, we have:
px,y) = py | x)p(x)

=px | Y)p(y)
 Often, p(x | y) is easier to compute than p(y | x)

* e.g., where x Is features and y is label

Definition: Bayes' rule

px | yp(y)
p(x)

piy | x) =




Bayes Rule

 Bayes' rule Is typically used to reason about our beliefs, given new
iInformation

 Example: a scientist might have a beliet about the prevalence of cancer In
smokers (Y), and update with new evidence (X)

* [In ML: we have a belief over our estimator (Y), and we update with new
data that is like new evidence (X)

| Prior
Definition: Bayes' rule " OSteror /

N l
pl | yp(y) |
-= —
oY %) P < Evidence




EXample: e

_Ipix y)
D ru g Te S-t _ <+——FEvidence
Example:
Questions:
p(Test = pos | Drug = T) = 0.99 uestions
p(Test = pOS ‘ D;/'ug — F) — (.01 1. What iSp(Dl"l/tg — F)?
p(Drug = True) = 0.005 2. Whatis p(Drug =T | Test = pos)?

Mapping to the formula, let
X be Test
Y be presence of the drug



EXample: e

Drug Test
Example:
p(Test = pos | Drug = T) = 0.99 Questions:
p(Test = pos | Drug = F) = 0.01 1. What is p(Drug = F)?
p(Drug = True) = 0.005 2. Whatis p(Drug = T | Test = pos)?

p(Drug = F)=1—-pDrug =T) =1 —0.005 = 0.995



EXample: e

_Ipix y)
D ru g Te S-t _ <+——FEvidence
Example:
ti :
p(Test = pos | Drug = T) = 0.99 Questions
p(Test = pOS ‘ D;/'ug — F) — (.01 1. What iSp(Dl"l/tg — F)?
p(Drug = True) = 0.005 2. Whatis p(Drug =T | Test = pos)?

p(Test = pos | Drug = T)p(Drug = T)

p(Drug =T | Test = pos) =
p(Test =pos)._____

Need to compute this part



EXample: e

_Ipix y)
D ru g Te S-t _ <+——FEvidence
Example:
ti :
p(Test = pos | Drug = T) = 0.99 Questions
p(Test = pOS ‘ D;/'ug — F) — (.01 1. What iSp(Dl"l/tg — F)?
p(Drug = True) = 0.005 2. Whatis p(Drug =T | Test = pos)?

p(Test = pos) = Z p(Test = pos, d)
de{T,F)

= p(Test = pos,D = F) + p(Test = pos,D = T)
= p(Test = pos|D = F)p(D = F) + p(Test = pos|D = T)p(D = T)
= 0.03 X 0.995 + 0.99 x 0.005 = 0.0348



EXample: e

Drug Test
Example:
p(Test = pos | Drug = T) = 0.99 Questions:
p(Test = pos | Drug = F) = 0.01 1. Whatis p(Drug = F)?
p(Drug = True) = 0.005 2. Whatis p(Drug = T | Test = pos)?

p(Test = pos) = 0.0343

p(Test = pos | Drug = T)p(Drug =T)  0.99 X 0.005
p(Test = pos) ~0.0348

~ (.142

p(Drug = T | Test = pos) =



INndependence of Random Variables

Definition: X and Y are independent if:

px,y) = p)p(y)

X and Y are conditionally independent given Z if:

p,y|z2)=pkx|2ply|2)




Example: Coins
(EX. 9 In the course text)

SUPPOSe you have a biased coin: the probabillity that it comes up heads is not
0.5. Instead, it has some probability to more likely to come up heads.

et Z be the bias of the coin, with £ = {0.3,0.5,0.8} and probabilities
P(Z=03)=0.7,P(Z=0.5)=0.2and P(Z=0.8) =0.1.
 Question: \What other outcome space could we consider?

* Question: \What kind of distribution is this?

* Question: What other kinds of distribution could we consider?

Let X and Y be two consecutive flips of the coin
Question: Are X and Y independent?

Question: Are X and Y conditionally independent given Z?



Example: Coins (2)

Now imagine | told you Z = 0.3 (i.e., probability of heads is 0.3)

Let X and Y be two consecutive flips of the coin

What is P(X = Heads |Z = 0.3)? What about P(X = Tails|Z = 0.3)?

What is P(Y = Heads|Z = 0.3)? What about P(Y = Tails|Z = 0.3)?

sPX=x,Y=y|Z=03)=PX=x|Z=03)P(Y=y|Z=0.3)?

e Thatis, are X and Y conditionally independent given Z?



Example: Coins (3)

« Now imagine we do not know Z
* e.d., you randomly grabbed it from a bin of coins with probabillities

PZ=03)=0.7,PZ=05)=02and P(Z=0.8)=0.1
e What is P(X = Heads)?

P(X = Heads)= ), P(X = Heads|Z=)p(Z =2)
2€{0.3,0.5,0.8)
= P(X = Heads|Z = 0.3)p(Z = 0.3)
+P(X = Heads |Z = 0.5)p(Z = 0.5)
+P(X = Heads |Z = 0.8)p(Z = 0.8)
=0.3%x0.74+05x02+0.8x0.1 =0.39



Example: Coins (4)

* Now imagine we do not know Z
* e.g., you randomly grabbed it from a bin of coins with probabillities

PZ=03)=0.7,P(Z=0.5)=0.2and P(Z=0.8) =0.1
e IsP(X = Heads,Y = Heads) = P(X = Heads)p(Y = Heads)?
e [or brevity, lets use h for Heads

PX=hY=h) = 2 PX=hY=h|Z=2pZ=2)
2€{0.3,0.5,0.8)

— 2 PX=h|Z=2PY =h|Z=2pZ=7)
2€{0.3,0.5,0.8)




Example: Coins (4)

. P(Z=023) =

0.7, P(Z=0.5)=0.2and P(Z=0.8) =0.1

e IsP(X = Heads,Y = Heads) = P(X = Heads)p(Y = Heads)"

PXX="hY=h)

— 2 PX=hY=h|Z=2)p(Z=72)
2€{0.3,0.5,0.8)

) PX=h|Z=2)P(Y=h|Z=2pZ=7)
z€{0.3,0.5,0.8}
=PX=h|Z=03)P(Y=h|Z=0.3)pZ = 0.3)
+PX=h|Z=05PY =h|Z=05p(Z=0.5)
+PX=h|Z=08)p(Y="nh|Z=0.8)p(Z=0.8)
=03%X03x0.74+05x%xx%05x%x024+0.8x%x0.8x0.1
= 0.177 # 0.39*0.39 = 0.1521



Example: Coins (4)

et Z be the bias of the coin, with £ = {0.3,0.5,0.8} and probabilities
P(Z=03)=0.7,P(Z=0.5)=0.2and P(Z=0.8) =0.1.

Let X and Y be two consecutive flips of the coin

Question: Are X and Y conditionally independent given Z?

e e, PX=x,Y=y|Z=2)=PX=x|Z=2)P(Y=y|Z=12)
Question: Are X and Y independent?

e | e, P(X:x,Yzy) =P(X=X)P(Y=y)



The Distribution Changes Based on
VWhat We Know

The colin has some true bias z

f we know that bias, we reason about P(X = x|Z = z)
 Namely, the probability of x given we know the bias is z

If we do not know that bias, then from our perspective the coin
outcomes follows probabilities P(X = x)

* [he world still flips the coin with bias z

Conditional independence is a property of the distribution we are reasoning
about, not an objective truth about outcomes




A DIt more Intultion

* |f we do not know that bias, then from our perspective the coin
outcomes follows probabilities P(X = x, Y = y)

e and X and Y are correlated

o |f we know X = h, do we think it’s more likely Y = h? i.e., is
PX=hY=h)>PX=h~hY=17?



Why IS Independence and
conditional independence important?

e |.2., how IS this relevant

e [et’simagine you want to infer (or learn) the bias of the coin, from data

e data in this case corresponds to a sequence of flips X, X5, ..., X,

» Youcanask: PZ=z|X,=H,X, =H,X;=1T,...,.X =H)

See 10 Heads
p(2) and 2 Tails p(2)
_—
H = H B
0.3 0.5 0.8 0.3 0.5 0.8




More uses for Independence
and conditional Independence

e |f|told you X = roof type was independent of Y = house price, would you
use X as a feature to predict Y7

* |magine you want to predict Y = Has Lung Cancer and you have an indirect
correlation with X = Location since in Location 1 more people smoke on
average. If you could measure Z = Smokes, then X and Y would be

conditionally independent given Z.

e Suggests you could look for such causal variables, that explain these
correlations

 We will see the utility of conditional independence for learning models



=Xpected Value

The expected value of a random variable is the weighted average of that
variable over its domain.

Definition: Expected value of a random variable

er o-Xp(x) if X is discrete

—[X] =

f - xp(x)dx if X is continuous.




Relationsnhip to Population Average
and Sample Average

Or Population Mean and Sample Mean

Population Mean = Expected Value, Sample Mean estimates this number

* e.g., Population Mean = average height of the entire population

For RV X = height, p(x) gives the probability that a randomly selected person
has height x

Sample average: you randomly sample n heights from the population
* Implicitly you are sampling heights proportionally to p

As n gets bigger, the sample average approaches the true expected value



Connection to Sample Average

* |magine we have a biased coin, p(x = 1) = 0.75, p(x = 0) = 0.25
* Imagine we flip this coin 1000 times, and see (x = 1) 700 times

 [he sample average IS

1 1000 1
000 24 = Togo | &+ 2

300 700
= () X F1 X ==0X03+1x0.7=0.7
1000 1000

* [he true expected value Is
Y px=0xplx=0)+1p(x=1)=0x025+1x0.75 = 0.75
xe{0,1}



EXpected Value with Functions

The expected value of a function f : & — R of a random variable is the
welighted average of that function's value over the domain of the variable.

Definition: Expected value of a function of a random variable

er o JOOp(x) if X'is discrete
I&p f(x)p(x)dx if Xis continuous.

—[fX)] =

Example:
Suppose you get $10 if heads is flipped, or lose $3 if tails is flipped.
What are your winnings on expectation”




EXpected Value Example

Example:
Suppose you get $10 if heads is flipped, or lose $3 if tails is flipped.

What are your winnings on expectation?

X is the outcome of the coin flip, 1 for heads and O for tails

)3 ifx=0
=143

fx =1

Y = f(X) is a new random variable

(Y] = ELfX0] = ), fp@) = f0)p0) +f(p(1) = 5% 3 +.5% 10 = 6.5

b=t A




One More Example

Suppose X is the outcome of a dice role

—1 ifx <3
Jx) = {1 fx >4

Y = f(X) is a new random variable. We see ¥ = — 1 each time we observe 1, 2 or 3.
We see Y = 1 each time we observe 4, 5, or 6.

(Y] = ELfX)] = ) fp()

b= A

= (-D(pX = D+p(X =2 +pX =3))

+ (D(p(X=4)+pX =5 +p(X =6))



One More Example

Suppose X is the outcome of a dice role

-1 fx<3
Jx) =
| if x > 4
Y = f(X) is a new random variable. We see Y = — 1 each time we observe 1, 2 or 3.

We see Y = 1 each time we observe 4, 5, or 6.

[ Y] = E[f(X)] = Zf(X)P(X) = Z (@) p=-D=pX=D+pX=2)+pX=3)=05
x€XL ye{—1,1} pY=1)=pX=4)+pX=5)+pX=6)=0.5

= (-D(pX = D) +p(X =2 +p(x =3))

+ (1)(p(X — &)+ p(X = 5) + p(X = 6)) — _ 1(0.5) + 1(0.5)

Summing over X with p(x) is equivalent, and simpler (no need to infer p(y))



Expected Value Is a Lossy Summary

P(X)
P(X)




Conditional Expectations

Definition:
The expected value of ¥ conditional on X = x is

Zyeyyp(y | x) if Yis discrete,

- Y ‘ X =x| =
f? yp(y | x)dy if Yis continuous.

Question: What is E[Y | X]?




Conditional Expectation Example

« X is the type of a book, O for fiction and 1 for non-fiction

» p(X = 1) is the proportion of all books that are non-fiction

e Y is the number of pages

» p(Y = 100) is the proportion of all books with 100 pages

« E[Y|X = 0] is different from E[Y | X = 1]
e e.9. E[Y|X = 0] = 70 is different from E[Y | X = 1] = 150

 Another example: E[X | Z = 0.3] the expected outcome of the coin flip
given that the biasis 0.3 (E[X|Z=0.3] =0x 0.7+ 1 x 0.3 = 0.3)




Conditional Expectation Example (cont)

» What do we mean by p(y| X = 0)? How might it differ from p(y | X = 1)

p(y) for X = 0, fiction books p(y) for X = 1, nonfiction books

Lots of shorter books

| ots of medium A long talil, a few very long books

length books



Conditional Expectation Example (cont)

» What do we mean by p(y| X = 0)? How might it differ from p(y | X = 1)

Ml

« E[Y|X = 0] is the expectation over Y under distribution p(y | X = 0)

« E[Y|X = 1] is the expectation over Y under distribution p(y | X = 1)




Conditional Expectations

Definition:
The expected value of ¥ conditional on X = x is

Zyeyyp(y | x) if Yis discrete,

- Y ‘ X =x| =
f? yp(y | x)dy if Yis continuous.

Question: What is E[Y | X]?




Conditional Expectations

Definition:
The expected value of Y conditional on X = x is

Zyeyyp(y | x) if Yis discrete,

[V | X =x] =

I? yp(y | x)dy if Yis continuous.

Question: What is E[Y | X]?
Answer: Z = E[Y | X] is a random variable, z = E[Y | X = x] is an outcome




Properties of Expectations

e Linearity of expectation:

« [ElcX] = cE[X] for all constant ¢
» E[X+ Y] =E[X]+E[Y]

* Products of expectations of independent

random variables X, Y:
» E[XY] = E[X]E[Y]

 Law of lotal Expectation:

. E|E[Y|X]| = EY

* Question: How would you prove these?



| Inearity of Expectation

X+Y]= ) pEy)E+y) 2 2 PEyx= 2, ) plny

(X, Y)EX XY YEY x€X xeZ yeY
= ), D Py +) = 2, x ) pwy) Bp= ), plxy)
VEY x€XL Y&t yed VEY
= Z xp(x)
xXeX

= Y peeyx+ Y Y peryy

YEY x€XL YEY XxE€EX —

=[X ]




| Inearity of Expectation

(X + Y] = Z px,y)(x +y) D D pyx= ) Y plyx

(X V)EXLXY YEY x€XL XX ye¥Y
— Z Z p(x, v)(x + V) = Y x ) px.y) >p&x)= ) p@.y)
yEY x€X xel yey YEY
= Z xp(x)
~ Z ZP(X,)/)X—I— Z ZP(X,Y))’ XEX
YEY x€XL YEY x€XL = E[X]

= E[X] + E[Y]




What If the RVs are continuous?

X+YI= Y ploy)C+y) (X + Y] = J px, y)(x + y)d(x, y)
XY EXXY s
= > D pr.y)E+y) = J I p(x, y)(x + y)dxdy
YEY xeX a4
— yezg XEZSZ plx, y)x + yezy XEZ%P(X, y)y — J I p(x, V)xdxdy + J [ p(x, v)ydxdy
= E[X] + E[Y] g o
= J XJ p(x, y)dydx + [ yJ p(x, y)dxdy
T Yy Yy X

J XP(X)dX-FJ yp(V)dy
X /

[ Y]

[
—
>
_|_




Properties of Expectations

Linearity of expectation: E[Y]= ) yp(y) def. E[Y]

ey
[cX] = cElX]for all constant ¢ = Z y Z px,y) def. marginal distribution
« E[X+ Y] =E[X]+ E[Y] y§”§ff
= yp(x, y)

Products of expectations of independent ‘€% yey rearrange sums

random variables X, Y- = ) Yy | p) Chain rule
XEX yeY

» E[XY] = E[X]E[Y]

L aw of Total Expectation: B XZ; [yg;y Py | x)]p ()

. _l‘[Y‘XH = ‘[Y] =Z([E[Y\X=x])p(x) def. E[Y | X = X]
xed

Question: How would you prove these” - Z (ELY | X = x]) p(x)

xXeX
= E (E[Y | X]) B def. expected value of function



Variance

Definition: [he variance of a random variable Is

Var(X) =

= [(X—

[ X])?|.

.e., E[ f(X)] where f(x) = (x — -[X])z.

—quivalently,
Var(X) =

(Why?)

= [X?] - (E[X))°




Covariance

Definition: The covariance of two random variables Is

[ X])?)

Cov(X,Y) =

- [(x -

- [ XY | =

= [ X ]

-1 Y].

Large Positive
Covariance

Large Negative
Covariance

Near Zero
Covariance

Question: \What is the range of Cov(X, Y)?




Correlation

Definition: The correlation of two random variables IS
Cov(X, Y)

\/ Var(X)Var(Y)

Corr(X, Y) =

Large Negative Near Zero Large Positive
Covariance Covariance Covariance

Question: \What is the range of Corr(X, Y)?
hint: Var(X) = Cov(X, X)




Properties of Varlances

« Var|c] = 0 for constant ¢

e Var[cX] = ¢*Var[X] for constant ¢

e Var| X+ Y] = Var|X] + Var| Y] + 2Cov| X, Y]

* Forindependent X, Y,

Var| X + Y| = Var| X ]| + Var[ Y] (why?)



INndependence and Decorrelation

* |[ndependent RVs have zero correlation (why?)

hint: Cov| X, Y| = E|XY]| — E[X]E]Y]

» Uncorrelated RVs (i.e., Cov(X, Y) = 0) might be dependent

(i.e., p(x,y) # p(xX)p(y)).

e Correlation (Pearson's correlation coefficient) shows linear relationships; but can
Miss nonlinear relationships

. Example: X ~ Uniform{—2, — 1,0,1,2}, Y = X?
e EIXY]=2(-2%Xx4)+.22%x4)+ 2(—1x1)+.2(1 x1)+ .2(0X%x0)
e E[X] =0
« So E[XY] - E[X]E[Y]=0-0E[Y]=0




Summary

Random variables are functions from sample to some value
* Upshot: A random variable takes different values with some probability

The value of one variable can be informative about the value of another
(oecause they are both functions of the same sample)

* Distributions of multiple random variables are described by the joint probability
distribution (joint PMF or joint PDF)

* You can have a new distribution over one variable when you condition on the other

The expected value of a random variable is an average over its values, weighted by the
porobability of each value

The variance of a random variable is the expected squared distance from the mean

The covariance and correlation of two random variables can summarize how changes in
one are informative about changes in the other.



EXercise applying your knowledge
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We want to model commute time as a (Gaussian

'S revisit the commuting example, and assume we collect continuous
Mmmute times

1 2
exXp | =5 70— H)

What parameters do | have to specify (or learn) to model commute times
with a Gaussian®?

s a Gaussian a good choice?

O

o

O

Clormes oo oooo—p

05 1 ‘
o

4 6 8

10 12 14 16 18 20 22 24 ¢

0.7 .

0.6 |

0.5

0.4

0.3F

0.2F

0.1F

0




EXercise applying your knowledge

* A better choice is actually what is called a Gamma distribution

0.7 .
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EXercise applying your knowledge

» We can also consider conditional distributions p(y | x)

e Y isthe commute time, let X be the month

» Why is it useful to know p(y | X = Feb) and p(y | X = Sept)?

« \What else could we use for X and why pick it?
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EXercise applying your knowledge

o Let'suse asimple X, where itis 1 if it is slippery out and O otherwise

 T[Then we could model two Gaussians, one for the two types of conditions

p(y| X =0) =N (po,05)
p(y| X =1) :N(Mlyff%) 07—

— 1=0,0=0.5
— p=00=1
25 T \ 06 Z=-2,ac7=0.75
0.5}

20 1 o|® Gaussian denoted by N 0al
A5 1 0.3}

10 + o 0.2}
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