CMPUT 267 Basics of Machine Learning Winter 2024 January 16 2024

Announcements

- Please read FAQ document on course webpage.
- Course information at https://nidhihegde.github.io/mlbasics
- Assignment due dates
- TA Office hours updated
- Participation Reading Exercises
 - on eClass;
 - open for a 48 hour period; one hour to complete
 - first one is a practise one just a pdf, not as a quiz on eClass
 - First one that counts open Monday, closes (due) Tuesday 11:59 pm Tuesday 10am and closes Thursday 10am, as mentioned on eClass, and you have 60 minutes to complete it.

Outline

- 1. Recap
- 2. Random Variables
- 3. Multiple Random Variables
- 4. Independence
- 5. Expectations and Moments

Hecap

- Probabilities are a means of quantifying uncertainty \bullet
- The **probability space** models an experiment, or a real world process. \bullet
- The sample space Ω : the set of all possible outcomes of the experiment.
- The event space $\mathscr{E}: \mathscr{E} \subseteq \mathscr{P}(\Omega)$, the space of potential results of the experiment.
- A probability distribution is defined on a measurable space consisting of a sample space and an event space. Any function $P: \mathscr{E} \to [0,1]$ that is a probability measure.
- A probability distribution is defined on a measurable space consisting of a sample space and an event space.
- **Discrete** sample spaces (and random variables) are defined in terms of **probability mass** \bullet functions (PMFs)
- **Continuous** sample spaces (and random variables) are defined in terms of **probability** density functions (PDFs)

Discrete vs. Continuous Sample Spaces

Discrete (countable) outcomes

- $\Omega = \{1, 2, 3, 4, 5, 6\}$
- $\Omega = \{\text{person, woman, man, camera, TV, }\dots\}$
- $\Omega = \mathbb{N}$
- $\mathscr{E} = \{ \emptyset, \{1,2\}, \{3,4,5,6\}, \{1,2,3,4,5,6\} \}$

Typically: $\mathscr{E} = \mathscr{P}(\Omega)$

Question: $\mathscr{E} = \{\{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}\}\}?$

Continuous (uncountable) outcomes $\Omega = [0,1]$ $\Omega = \mathbb{R}$ $\Omega = \mathbb{R}^k$ $\mathscr{E} = \{ \emptyset, [0,0.5], (0.5,1.0], [0,1] \}$ Typically: $\mathscr{E} = B(\Omega)$ ("Borel field")

Note: not $\mathscr{P}(\Omega)$

Random Variables

Rather than referring to the probability space, we refer to probabilities on quantities of interest.

Example: Suppose we observe both a die's number, and where it lands.

 $\Omega = \{(left, 1), (right, 1), (left, 2), (right, 2), \dots, (right, 6)\}$

We might want to think about the probability that we get a large number, without thinking about where it landed.

We could ask about $P(X \ge 4)$, where X = the number that comes up.

Random variables are a way of reasoning about a complicated underlying probability space in a more straightforward way.

Random Variables, Formally

Given a probability space (Ω, \mathscr{E}, P) , a random variable is a function $X: \Omega \to \Omega_X$ (where Ω_X is some other outcome space), satisfying $\{\omega \in \Omega \mid X(\omega) \in A\} \in \mathscr{E} \quad \forall A \in B(\Omega_{Y}).$ It follows that $P_X(A) = P(\{\omega \in \Omega \mid X(\omega) \in A\}).$ **Example:** Let Ω be a population of people, and $X(\omega)$ = height, and A = [5'1'', 5'2''].

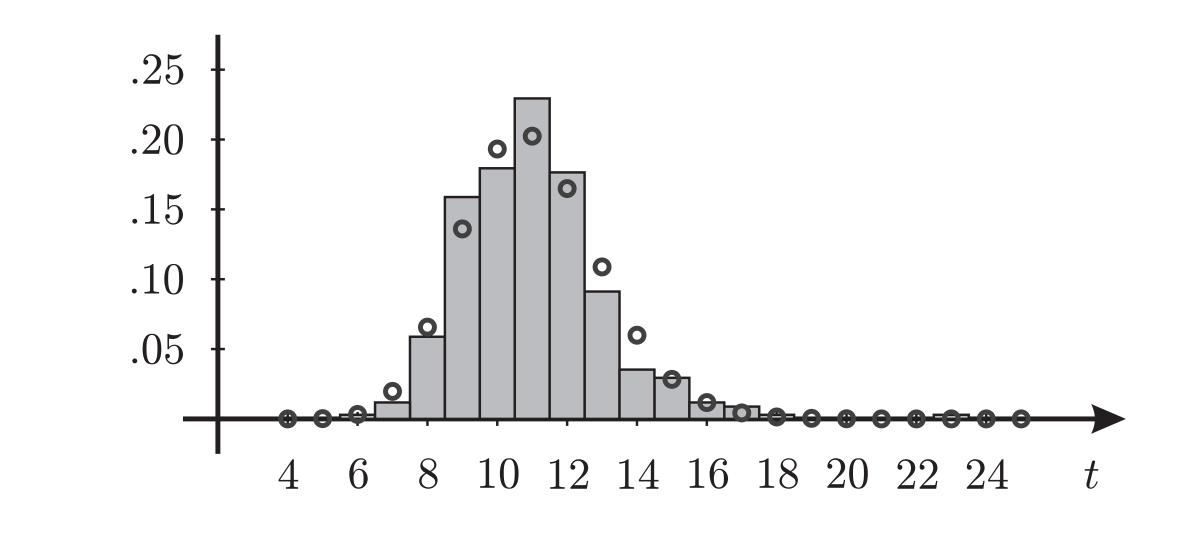
 $P(X \in A) = P(5'1'' \le X \le 5'2'') = P(\{\omega \in \Omega : X(\omega) \in A\}).$

Random Variables and Events

- A Boolean expression involving random variables defines an event: E.g., $P(X \ge 4) = P(\{\omega \in \Omega \mid X(\omega) \ge 4\})$
- Similarly, every event can be understood as a Boolean random variable: $Y = \begin{cases} 1 & \text{if event } A \text{ occurred} \\ 0 & \text{otherwise.} \end{cases}$
- variables rather than probability spaces.

• From this point onwards, we will exclusively reason in terms of random

Consider the continuous commuting example again, with observations 12.345 minutes, 11.78213 minutes, etc.



- **Question:** What is the random variable?
- **Question:** How could we turn our observations into a histogram? lacksquare

Example: Histograms

What About Multiple Variables?

- So far, we've really been thinking about a single random variable at a time
- Straightforward to define multiple random variables on a single probability space **Example:** Suppose we observe both a die's number, and where it lands. $\Omega = \{(left, 1), (right, 1), (left, 2), (right, 2), \dots, (right, 6)\}$ $X(\omega) = \omega_2 =$ number $Y(\omega) = \begin{cases} 1 & \text{if } \omega_1 = left \\ 0 & \text{otherwise.} \end{cases} = 1 \text{ if landed on left}$ $P(Y = 1) = P(\{\omega \mid Y(\omega) = 1\})$

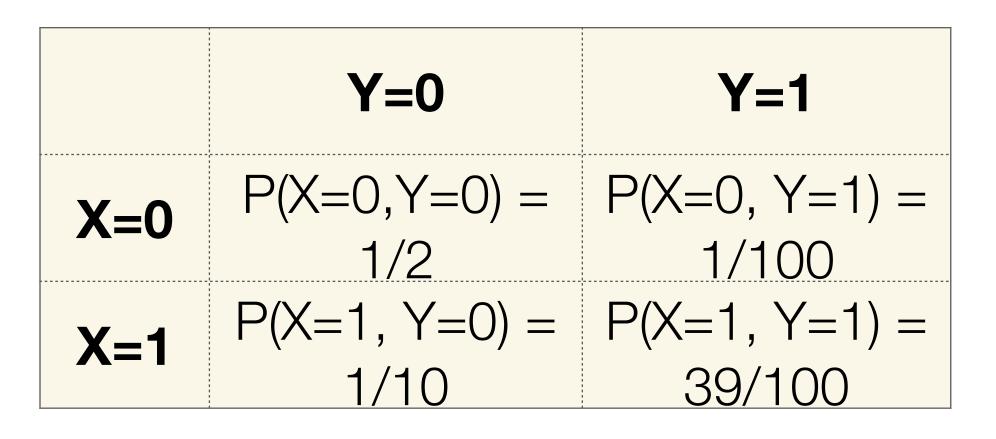
 $P(X \ge 4 \land Y = 1) = P(\{\omega \mid X(\omega) \ge 4 \land Y(\omega) = 1\})$

Joint Distribution

We typically model the interactions of different random variables.

Joint probability mass function: p

Example: $\mathscr{X} = \{0,1\}$ (young, old) and $\mathscr{Y} = \{0,1\}$ (no arthritis, arthritis)



$$p(x, y) = P(X = x, Y = y)$$

$$p(x, y) = 1$$

$$\mathcal{Y}$$

Is this joint distribution valid?

	Y=0	Y=1
X=0	P(X=0,Y=0) = 50/100	P(X=0, Y=1) = 1/100
X=1	P(X=1, Y=0) = 10/100	P(X=1, Y=1) = 39/100

Exercise: Check if $\sum p(x, y) = 1$ $x \in \{0,1\} \ y \in \{0,1\}$

 $\sum p(x, y) = 1/2 + 1/100 + 1/10 + 39/100 = 1$ $x \in \{0,1\} y \in \{0,1\}$

Example: $\mathscr{X} = \{0,1\}$ (young, old) and $\mathscr{Y} = \{0,1\}$ (no arthritis, arthritis)

Questions About Multiple Variables **Example:** $\mathcal{X} = \{0,1\}$ (young, old) and $\mathcal{Y} = \{0,1\}$ (no arthritis, arthritis)

	Y=0	Y=1
X=0	P(X=0,Y=0) = 1/2	P(X=0, Y=1) = 1/100
X=1	P(X=1, Y=0) = 1/10	P(X=1, Y=1) = 39/100

- Are these two variables related at all? Or do they change independently?
- Given this distribution, can we determine the distribution over just Y? I.e., what is P(Y = 1)? (marginal distribution)
- we know is young has arthritis? (conditional probability $P(Y = 1 \mid X = 1))$

If we knew something about one variable, does that tell us something about the distribution

over the other? E.g., if I know X = 0 (person is young), does that tell me the prob. that person

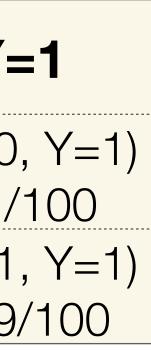
$$P(Y = 0) = \sum_{x \in \mathcal{X}} p(x,0) = \sum_{x \in \{\text{young,old}\}} p(x,0)$$

	Y=0	Y
X=0	P(X=0,Y=0) = 1/2	P(X=0 = 1/
X=1	P(X=1, Y=0) = 1/10	P(X=1 = 39

More generically

$$p(y) = \sum_{x \in \mathcal{X}} p(x, y)$$

stribution for Y $p(Y = 1) = \sum_{x \in \mathcal{X}} p(x, 1) = \sum_{x \in \{\text{young,old}\}} p(x, 1)$



Back to our example

Example: $\mathcal{X} = \{0,1\}$ (young, old) and $\mathcal{Y} = \{0,1\}$ (no arthritis, arthritis)

	Y=0	Y=1
X=0	P(X=0,Y=0) = 50/100	P(X=0, Y=1) = 1/100
X=1	P(X=1, Y=0) = 10/100	P(X=1, Y=1) = 39/100

Exercise: Compute marginal $p(x) = \sum p(x, y)$

y∈{0,1}

Back to our example (cont) **Example:** $\mathscr{X} = \{0,1\}$ (young, old) and $\mathscr{Y} = \{0,1\}$ (no arthritis, arthritis)

	Y=0	Y=1
X=0	P(X=0,Y=0) = 50/100	P(X=0, Y=1) = 1/100
X=1	P(X=1, Y=0) = 10/100	P(X=1, Y=1) = 39/100

Exercise: Compute marginal $p(x = 1) = \sum p(x = 1, y) = \frac{49}{100}$, $y \in \{0,1\}$ $p(x = 0) = 1 - p(x = 1) = \frac{51}{100}$

Marginal distributions

- For two random variables X, Y,
- If they are discrete we have p(x) =

If they are continuous we have p(x)

- If X is discrete and Y is continuous
 - If X is continuous and Y is discrete then $p(x) = \sum p(x, y)$

$$= \sum_{y \in \mathcal{Y}} p(x, y)$$

$$x) = \int_{\mathscr{Y}} p(x, y) dy$$

s then
$$p(x) = \int_{\mathscr{Y}} p(x, y) dy$$

 $y \in \mathcal{Y}$

Marginal Distributions

or "marginalizing out" the remaining variables).

Question: Why do we write p for $p(x_i)$ and $p(x_1, ..., x_d)$? • They can't be the same function, they have different domains!

A marginal distribution is defined for a subset of X by summing or integrating out the remaining variables. (We will often say that we are "marginalizing over"

Discrete case: $p(x_i) = \sum \dots \sum p(x_{i-1}, x_{i+1}, \dots, x_d)$ $x_1 \in \mathcal{X}_1$ $x_{i-1} \in \mathcal{X}_{i-1}$ $x_{i+1} \in \mathcal{X}_{i+1}$ $x_d \in \mathcal{X}_d$ **Continuous:** $p(x_i) = \int_{\mathcal{X}_1} \cdots \int_{\mathcal{X}_{i+1}} \int_{\mathcal{X}_{i+1}} \cdots \int_{\mathcal{X}_d} p(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_d) dx_1 \dots dx_{i-1} dx_{i+1} \dots dx_d$

Are these really the same function?

- **No.** They're not the same function. \bullet
- But they are **derived** from the **same joint distribution**.
- So for brevity we will write p(x, y), p(x) and p(y)
- Even though it would be more precise to write something like $p(x, y), p_x(x) \text{ and } p_y(y)$
- \bullet

We can tell which function we're talking about from context (i.e., arguments)

PMFs and PDFs of Many Variables

In general, we can consider a d-dimensional random variable $\overline{X} = (X_1, \dots, X_d)$ with vectorvalued outcomes $\vec{x} = (x_1, \dots, x_d)$, with each x_i chosen from some \mathcal{X}_i . Then,

Discrete case:

 $p: \mathscr{X}_1 \times \mathscr{X}_2 \times \ldots \times \mathscr{X}_d \to [0,1]$ is a (joint) probability mass function if $\sum_{x_1 \in \mathcal{X}_1} \sum_{x_2 \in \mathcal{X}_2} \cdots \sum_{x_d \in \mathcal{X}_d} x_d \in \mathcal{X}_d$

Continuous case:

 $p: \mathscr{X}_1 \times \mathscr{X}_2 \times \ldots \times \mathscr{X}_d \to [0,\infty)$ is a (joint) probability density function if $\int_{\mathcal{X}_1} \int_{\mathcal{X}_2} \cdots \int_{\mathcal{X}_d} p(x_1, x_1)$

$$\sum_{d \in \mathcal{X}_d} p(x_1, x_2, \dots, x_d) = 1$$

$$x_2, \dots, x_d$$
) $dx_1 dx_2 \dots dx_d = 1$

Rules of Probability Already Covered the Multidimensional Case

Outcome space is $\mathscr{X} = \mathscr{X}_1 \times \mathscr{X}_2 \times \ldots \times \mathscr{X}_d$

Outcomes are multidimensional variables $\mathbf{x} = [x_1, x_2, \dots, x_d]$

Discrete case: $p: \mathcal{X} \to [0,1]$ is a (joint) probability mass function if $\sum p(\mathbf{x}) = 1$

Continuous case:

But useful to recognize that we have multiple variables

- x∈𝒴
- $p: \mathscr{X} \to [0,\infty)$ is a (joint) probability density function if $p(\mathbf{x}) d\mathbf{x} = 1$

Conditional Distribution

Definition: Conditional probability $P(Y = y \mid X = x)$

This same equation will hold for the corresponding PDF or PMF:

 $p(y \mid x$

Question: if p(x, y) is small, does that imply that p(y | x) is small?

$$f(x) = \frac{P(X = x, Y = y)}{P(X = x)}$$

$$x) = \frac{p(x, y)}{p(x)}$$

Visualizing the conditional distribution

P(X = young | Y = 0) = P(X = young, Y = 0)/P(Y = 0) = (50/100)/(60/100) = 50/60

Chain Rule

From the definition of conditional probability:

- $\Leftrightarrow p(y \mid x)p(x)$
- $\iff p(y \mid x)p(x) = p(x, y)$

This is called the **Chain Rule**.

 $=\frac{p(x,y)}{p(x)}$ $p(y \mid x)$ $=\frac{p(x,y)}{p(x)}p(x)$

Multiple Variable Chain Rule

The chain rule generalizes to multiple variables:

$$p(x, y, z) = p(x, y \mid z)p(z) = p(x \mid y, z)p(y \mid z)p(z)$$

$$\underbrace{p(y, z)}_{p(y, z)}$$

Definition: Chain rule $p(x_1, ..., x_d) = p(x_1)$

= p(.

$$x_{d} \prod_{i=1}^{d-1} p(x_{i} \mid x_{i+1}, \dots, x_{d})$$
$$x_{1} \prod_{i=2}^{d} p(x_{i} \mid x_{1}, \dots, x_{i-1})$$

The Order Does Not Matter

The RVs are not ordered, so we can write $p(x, y, z) = p(x \mid y, z)p(y \mid z)p(z)$

All of these probabilities are equal

 $= p(x \mid y, z)p(z \mid y)p(y)$ $= p(y \mid x, z)p(x \mid z)p(z)$ $= p(y \mid x, z)p(z \mid x)p(x)$ $= p(z \mid x, y)p(y \mid x)p(x)$ $= p(z \mid x, y)p(x \mid y)p(y)$

Bayes' Rule

From the chain rule, we have:

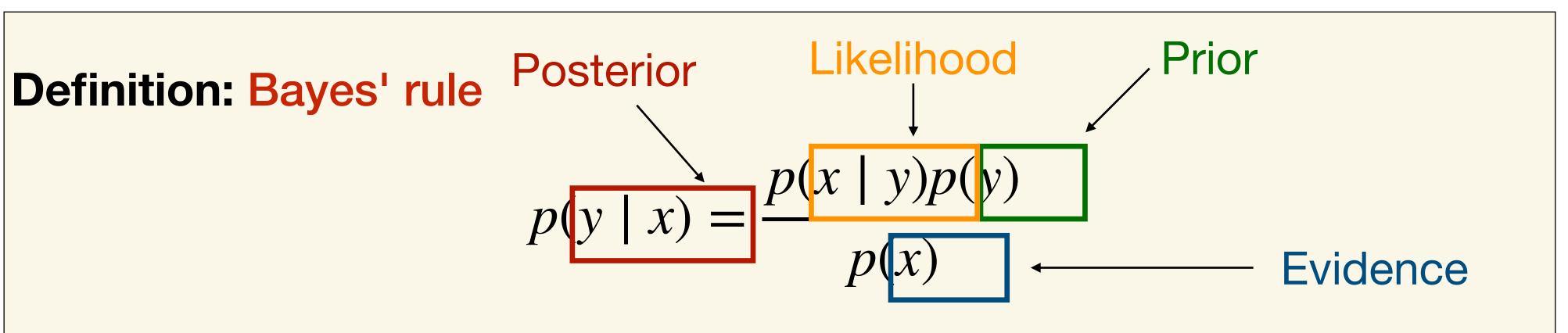
- $p(x, y) = p(y \mid x)p(x)$ $= p(x \mid y)p(y)$ • Often, $p(x \mid y)$ is easier to compute than $p(y \mid x)$
 - e.g., where x is **features** and y is **label**

Definition: Bayes' rule

$$\frac{p(x \mid y)p(y)}{p(x)}$$

Bayes' Rule

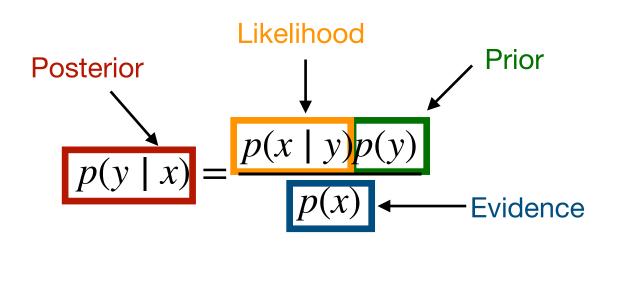
- Bayes' rule is typically used to reason about our beliefs, given new information
- Example: a scientist might have a belief about the prevalence of cancer in smokers (Y), and update with new evidence (X)
- In ML: we have a belief over our estimator (Y), and we update with new data that is like new evidence (X)



Example:

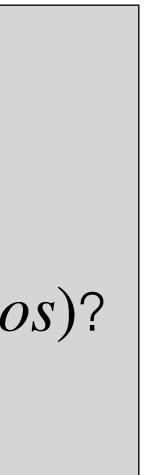
$p(Test = pos \mid Drug = T) = 0.99$ $p(Test = pos \mid Drug = F) = 0.01$ p(Drug = True) = 0.005

Mapping to the formula, let X be Test Y be presence of the drug



Questions:

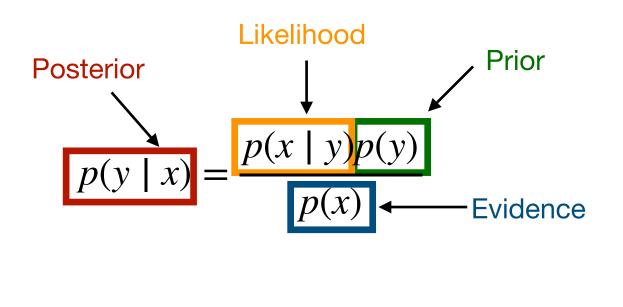
- 1. What is p(Drug = F)?
- 2. What is p(Drug = T | Test = pos)?



Example:

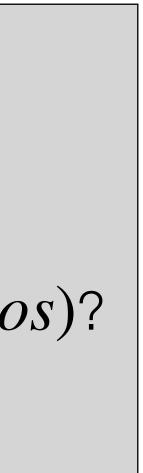
$p(Test = pos \mid Drug = T) = 0.99$ $p(Test = pos \mid Drug = F) = 0.01$ p(Drug = True) = 0.005

p(Drug = F) = 1 - p(Drug = T) = 1 - 0.005 = 0.995



Questions:

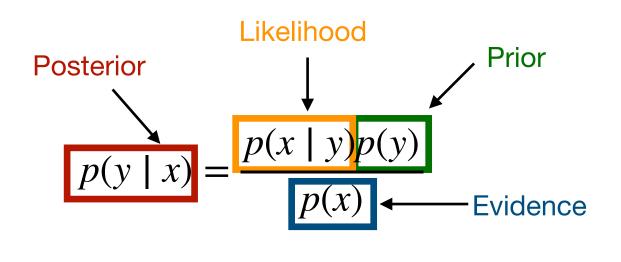
- 1. What is p(Drug = F)?
- 2. What is $p(Drug = T \mid Test = pos)$?

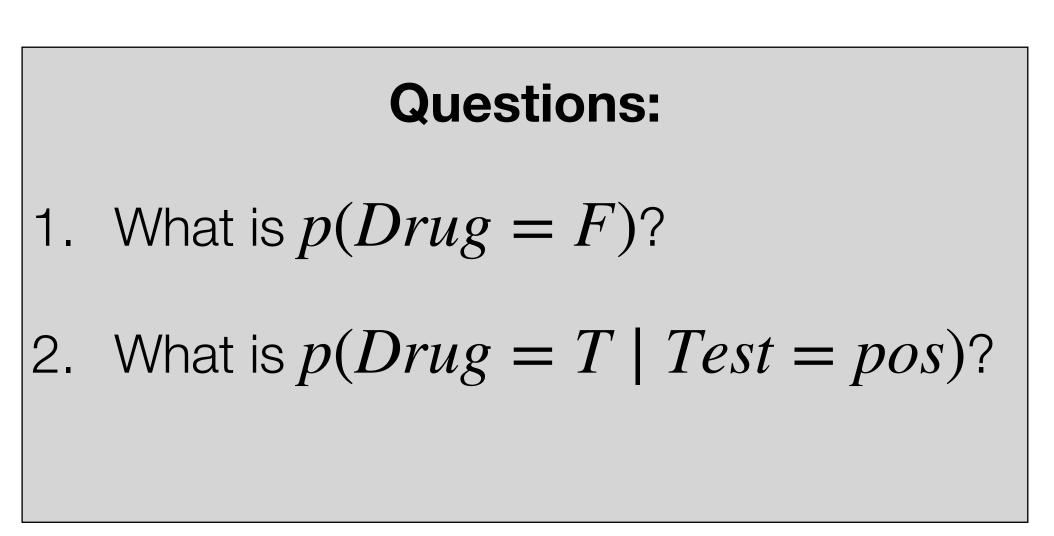


Example:

$p(Test = pos \mid Drug = T) = 0.99$ $p(Test = pos \mid Drug = F) = 0.01$ p(Drug = True) = 0.005

 $p(Drug = T \mid Test = pos) = \frac{P}{T}$





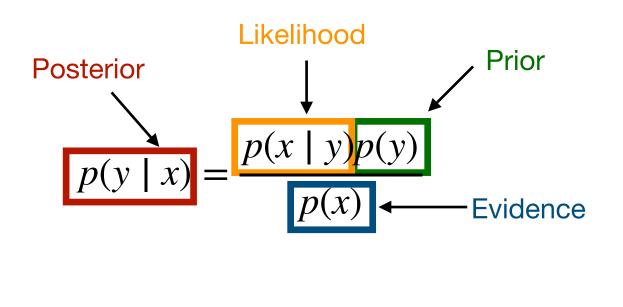
$p(Test = pos \mid Drug = T)p(Drug = T)$

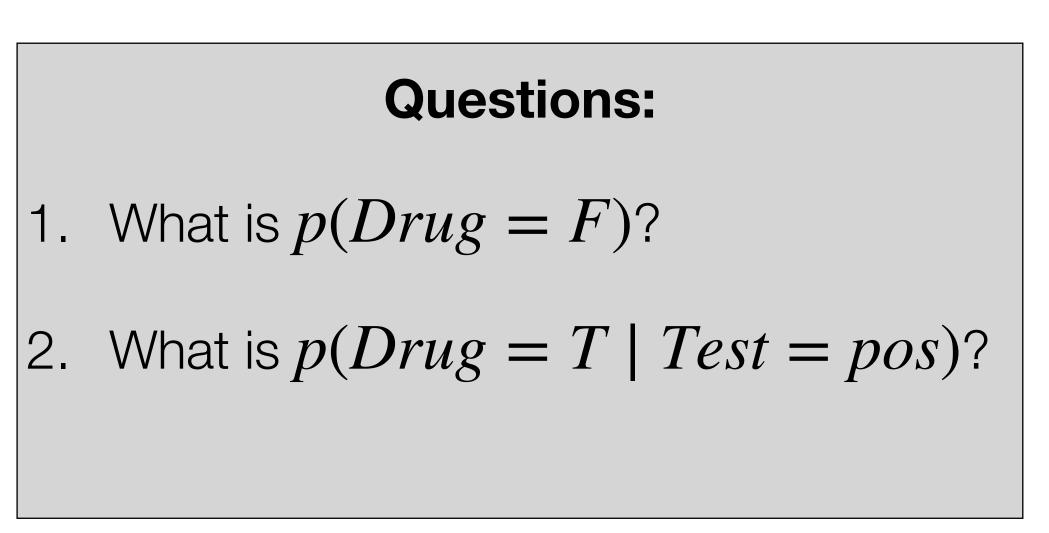
p(Test = pos)

Need to compute this part

Example: p(Test = pos | Drug = T) = 0.99p(Test = pos | Drug = F) = 0.01p(Drug = True) = 0.005

 $p(Test = pos) = \sum p(Test = pos, d)$ $d \in \{T,F\}$ = p(Test = pos, D = F) + p(T= p(Test = pos | D = F)p(D = $= 0.03 \times 0.995 + 0.99 \times 0.005$



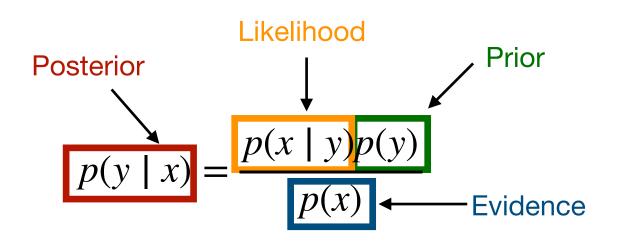


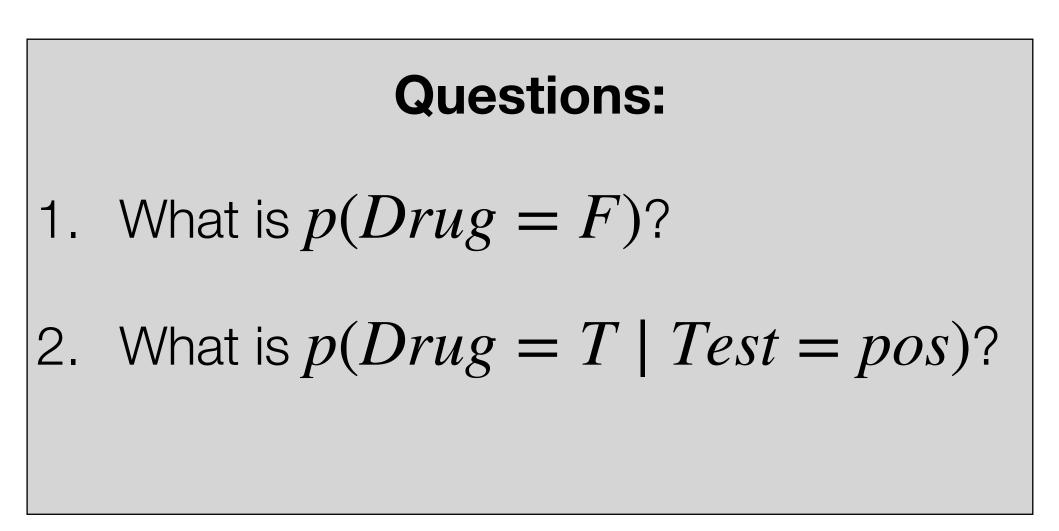
$$Fest = pos, D = T)$$

= F) + p(Test = pos | D = T)p(D = T)
5 = 0.0348

Example: $p(Test = pos \mid Drug = T) = 0.99$ $p(Test = pos \mid Drug = F) = 0.01$ p(Drug = True) = 0.005

$$p(Test = pos) = 0.0348$$
$$p(Drug = T \mid Test = pos) = \frac{p(Test = pos)}{p(Test = pos)}$$





 $s \mid Drug = T)p(Drug = T) = 0.99 \times 0.005$ ≈ 0.142 0.0348 p(Test = pos)

Independence of Random Variables

Definition: X and Y are independent if: p(x, y) = p(x)p(y)

X and Y are conditionally independent given Z if:

 $p(x, y \mid z) = p(x \mid z)p(y \mid z)$

Example: Coins (Ex. 9 in the course text)

- Suppose you have a biased coin: the probability that it comes up heads is not 0.5. Instead, it has some probability to *more* likely to come up heads.
- Let Z be the bias of the coin, with $\mathscr{Z} = \{0.3, 0.5, 0.8\}$ and probabilities P(Z = 0.3) = 0.7, P(Z = 0.5) = 0.2 and P(Z = 0.8) = 0.1.
 - Question: What other outcome space could we consider?
 - **Question:** What kind of distribution is this?
 - Question: What other kinds of distribution could we consider?
- Let X and Y be two consecutive flips of the coin
- Question: Are X and Y independent?
- Question: Are X and Y conditionally independent given Z?

Example: Coins (2)

- Now imagine I told you Z = 0.3 (i.e., probability of heads is 0.3)
- Let X and Y be two consecutive flips of the coin
- What is P(X = Heads | Z = 0.3)? What about P(X = Tails | Z = 0.3)?
- What is P(Y = Heads | Z = 0.3)? What about P(Y = Tails | Z = 0.3)?
- $\log P(X = x, Y = y | Z = 0.3) = P(X = x | Z = 0.3)P(Y = y | Z = 0.3)?$
 - That is, are X and Y conditionally independent given Z?

Example: Coins (3)

- Now imagine we do not know Z
 - e.g., you randomly grabbed it from a bin of coins with probabilities
- What is P(X = Heads)?
- $P(X = Heads) = \sum_{i=1}^{n} P(X = Heads | Z = z)p(Z = z)$ $z \in \{0.3, 0.5, 0.8\}$
 - = P(X = Heads | Z = 0.3)p(Z = 0.3)
 - +P(X = Heads | Z = 0.5)p(Z = 0.5)
 - +P(X = Heads | Z = 0.8)p(Z = 0.8)

P(Z = 0.3) = 0.7, P(Z = 0.5) = 0.2 and P(Z = 0.8) = 0.1

 $= 0.3 \times 0.7 + 0.5 \times 0.2 + 0.8 \times 0.1 = 0.39$

Example: Coins (4)

- Now imagine we do not know Z
 - e.g., you randomly grabbed it from a bin of coins with probabilities
- |s P(X = Heads, Y = Heads) = P(X = Heads)p(Y = Heads)?
 - For brevity, lets use h for Heads

$$P(X = h, Y = h) = \sum_{z \in \{0.3, 0.5, 0.8\}} P(x)$$
$$= \sum_{z \in \{0.3, 0.5, 0.8\}} P(x)$$

P(Z = 0.3) = 0.7, P(Z = 0.5) = 0.2 and P(Z = 0.8) = 0.1

Y(X = h, Y = h | Z = z)p(Z = z)

(X = h | Z = z)P(Y = h | Z = z)p(Z = z)

Example: Coins (4)

- P(Z = 0.3) = 0.7, P(Z = 0.5) = 0.2 and P(Z = 0.8) = 0.1
- ls P(X = Heads, Y = Heads) = P(X = Heads)p(Y = Heads)?
- $P(X = h, Y = h) = \sum_{k=1}^{n} P(X = h, Y = h | Z = z)p(Z = z)$ $z \in \{0.3, 0.5, 0.8\}$
 - = \sum P(Y) $z \in \{0.3, 0.5, 0.8\}$
 - = P(X = h | Z = 0.3)P(Y = h | Z = 0.3)p(Z = 0.3)
 - +P(X = h | Z = 0.5)P(Y = h | Z = 0.5)p(Z = 0.5)
 - +P(X = h | Z = 0.8)p(Y = h | Z = 0.8)p(Z = 0.8)
 - $= 0.3 \times 0.3 \times 0.7 + 0.5 \times 0.5 \times 0.2 + 0.8 \times 0.8 \times 0.1$ $= 0.177 \neq 0.39 * 0.39 = 0.1521$

$$X = h | Z = z) P(Y = h | Z = z) p(Z = z)$$

Example: Coins (4)

- Let Z be the bias of the coin, with $\mathscr{Z} = \{0.3, 0.5, 0.8\}$ and probabilities P(Z = 0.3) = 0.7, P(Z = 0.5) = 0.2 and P(Z = 0.8) = 0.1.
- Let X and Y be two consecutive flips of the coin
- Question: Are X and Y conditionally independent given Z?
 - i.e., P(X = x, Y = y | Z = z) = P(X = x | Z = z)P(Y = y | Z = z)
- Question: Are X and Y independent?
 - i.e. P(X = x, Y = y) = P(X = x)P(Y = y)

The Distribution Changes Based on What We Know

- The coin has some true bias z
- If we **know** that bias, we reason about P(X = x | Z = z)
 - Namely, the probability of x **given** we know the bias is z
- If we **do not know** that bias, then **from our perspective** the coin outcomes follows probabilities P(X = x)
 - The world still flips the coin with bias z
- Conditional independence is a property of the distribution we are reasoning about, not an objective truth about outcomes

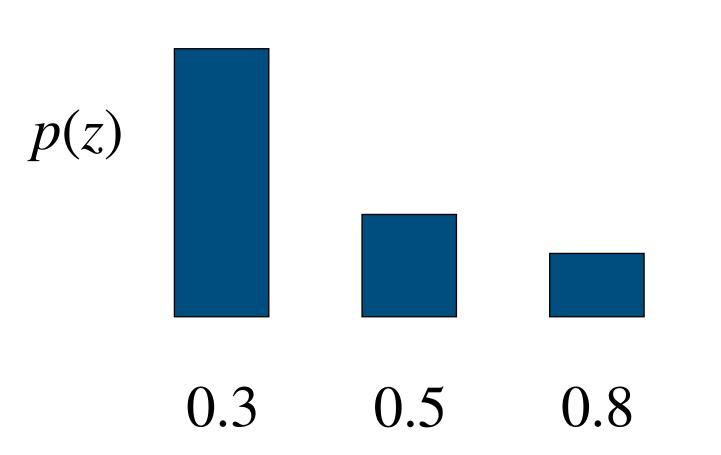
A bit more intuition

- If we **do not know** that bias, then **from our perspective** the coin outcomes follows probabilities P(X = x, Y = y)
 - and X and Y are correlated
- If we know X = h, do we think it's more likely Y = h? i.e., is P(X = h, Y = h) > P(X = h, Y = t)?

Why is independence and conditional independence important?

- i.e., how is this relevant
- - data in this case corresponds to a sequence of flips X_1, X_2, \ldots, X_n
- You can ask: $P(Z = z | X_1 = H, X_1)$

See 10 Heads and 2 Tails p(z)0.3 0.5 0.8



Let's imagine you want to infer (or learn) the bias of the coin, from data

$$X_2 = H, X_3 = T, \dots, X_n = H$$

More uses for independence and conditional independence

- use X as a feature to predict Y?
- \bullet average. If you could measure Z = Smokes, then X and Y would be conditionally independent given Z.
 - correlations
- We will see the utility of conditional independence for learning models

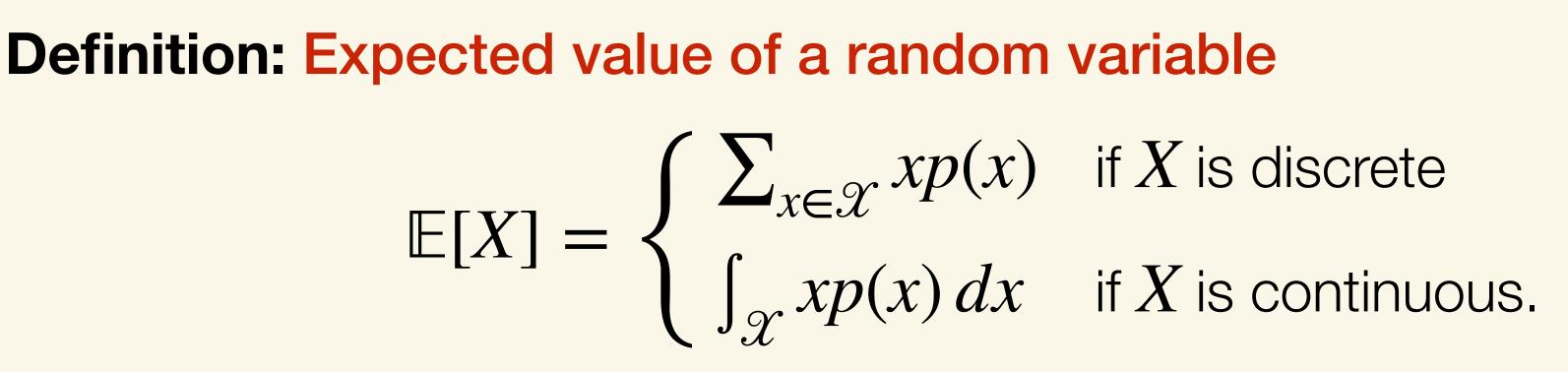
• If I told you X = roof type was **independent** of Y = house price, would you

Imagine you want to predict Y = Has Lung Cancer and you have an indirect correlation with X = Location since in Location 1 more people smoke on

• Suggests you could look for such causal variables, that explain these

Expected Value

variable over its domain.



The expected value of a random variable is the weighted average of that

Relationship to Population Average and Sample Average

- Or Population Mean and Sample Mean \bullet
- Population Mean = Expected Value, Sample Mean estimates this number • e.g., Population Mean = average height of the entire population
- For RV X = height, p(x) gives the probability that a randomly selected person has height x
- Sample average: you randomly sample n heights from the population • implicitly you are sampling heights proportionally to p
- As n gets bigger, the sample average approaches the true expected value

Connection to Sample Average

- Imagine we have a biased coin, p(x = 1) = 0.75, p(x = 0) = 0.25
- Imagine we flip this coin 1000 times, and see (x = 1) 700 times
- The sample average is $\frac{1}{1000} \sum_{i=1}^{1000} x_i = \frac{1}{1000} \left[\sum_{i:x_i=0}^{1} x_i + \sum_{i:x_i=1}^{1} x_i \right]$
- The true expected value is $\sum_{x \in \{0,1\}} p(x)x = 0 \times p(x = 0) +$

$$= 0 \times \frac{300}{1000} + 1 \times \frac{700}{1000} = = 0 \times 0.3 + 1 \times 0.7 = 0.7$$

 $\sum p(x)x = 0 \times p(x = 0) + 1p(x = 1) = 0 \times 0.25 + 1 \times 0.75 = 0.75$

Expected Value with Functions

The expected value of a function $f: \mathcal{X} \to \mathbb{R}$ of a random variable is the weighted average of that function's value over the domain of the variable.

Definition: Expected value of a function of a random variable $\mathbb{E}[f(X)] = \begin{cases} \sum_{x \in \mathcal{X}} f(x)p(x) & \text{if } X \text{ is discrete} \\ \int_{\mathcal{X}} f(x)p(x) \, dx & \text{if } X \text{ is continuous.} \end{cases}$

Example:

Suppose you get \$10 if heads is flipped, or lose \$3 if tails is flipped. What are your winnings **on expectation**?

Expected Value Example

Example:

Suppose you get \$10 if heads is flipped, or lose \$3 if tails is flipped. What are your winnings **on expectation**?

X is the outcome of the coin flip, 1 for heads and 0 for tails

$$f(x) = \begin{cases} 3 & \text{if } x = 0\\ 10 & \text{if } x = 1 \end{cases}$$

Y = f(X) is a new random variable $\mathbb{E}[Y] = \mathbb{E}[f(X)] = \sum_{x \in \mathcal{X}} f(x)p(x) = f(X)$

 $\mathbb{E}[Y] = \mathbb{E}[f(X)] = \sum f(x)p(x) = f(0)p(0) + f(1)p(1) = .5 \times 3 + .5 \times 10 = 6.5$

One More Example

Suppose X is the outcome of a dice role $f(x) = \begin{cases} -1 & \text{if } x \le 3\\ 1 & \text{if } x \ge 4 \end{cases}$

We see Y = 1 each time we observe 4, 5, or 6. $\mathbb{E}[Y] = \mathbb{E}[f(X)] = \sum f(y) n(y)$

$$E[Y] = \mathbb{E}[f(X)] = \sum_{x \in \mathcal{X}} f(x)p(x)$$

$$= (-1) \Big(p(X = 1) + p(X = 2) + p(X = 3) \Big)$$

+ $(1) \Big(p(X = 4) + p(X = 5) + p(X = 6) \Big)$

Y = f(X) is a new random variable. We see Y = -1 each time we observe 1, 2 or 3.

One More Example

Suppose X is the outcome of a dice role

$$f(x) = \begin{cases} -1 & \text{if } x \le 3\\ 1 & \text{if } x \ge 4 \end{cases}$$

Y = f(X) is a new random variable. We see Y = -1 each time we observe 1, 2 or 3. We see Y = 1 each time we observe 4, 5, or 6.

$$= (-1) \Big(p(X = 1) + p(X = 2) +$$

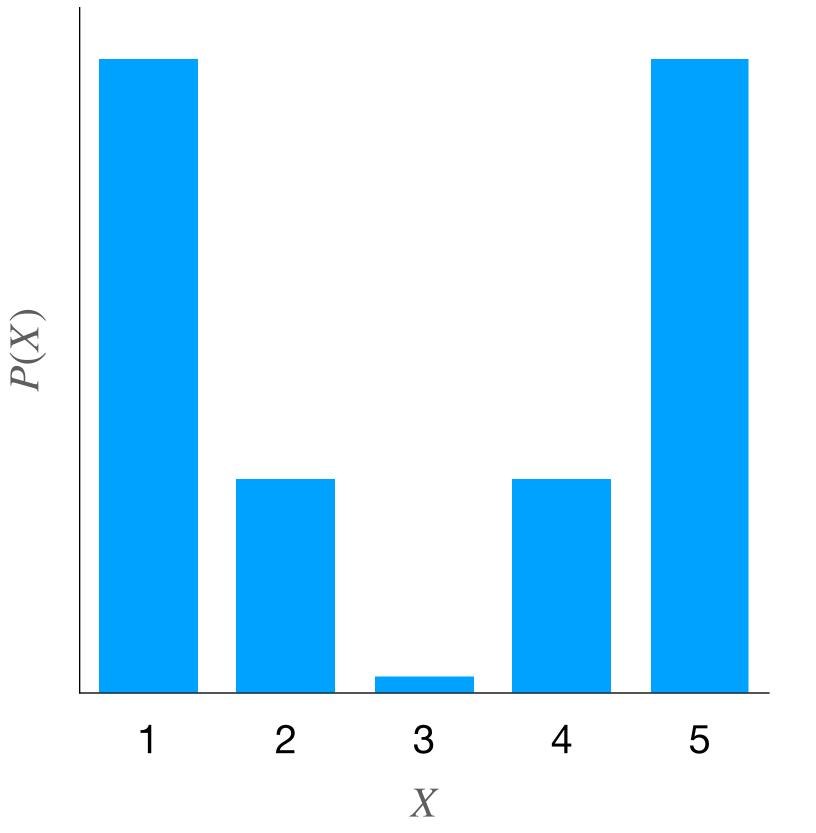
Summing over x with p(x) is equivalent, and simpler (no need to infer p(y))

 $\mathbb{E}[Y] = \mathbb{E}[f(X)] = \sum f(x)p(x) = \sum yp(y) \quad p(Y = -1) = p(X = 1) + p(X = 2) + p(X = 3) = 0.5$ $x \in \mathcal{X}$ $y \in \{-1,1\}$ p(Y = 1) = p(X = 4) + p(X = 5) + p(X = 6) = 0.5 $(X=3)\Big)$ $\nu(X=6)\Big) = -1(0.5) + 1(0.5)$



 $\mathbb{E}[X] = 3$ $\mathbb{E}[X^2] \simeq 10$

Expected Value is a Lossy Summary



 $\mathbb{E}[X] = 3$ $\mathbb{E}[X^2] \simeq 12$

Definition: The expected value of Y conditional on X = x is $\mathbb{E}[Y \mid X = x] = \begin{cases} \sum_{y \in \mathscr{Y}} yp(y \mid x) & \text{if } Y \text{ is discrete,} \\ \int_{\mathscr{Y}} yp(y \mid x) \, dy & \text{if } Y \text{ is continuous.} \end{cases}$

Question: What is $\mathbb{E}[Y \mid X]$?

Conditional Expectations

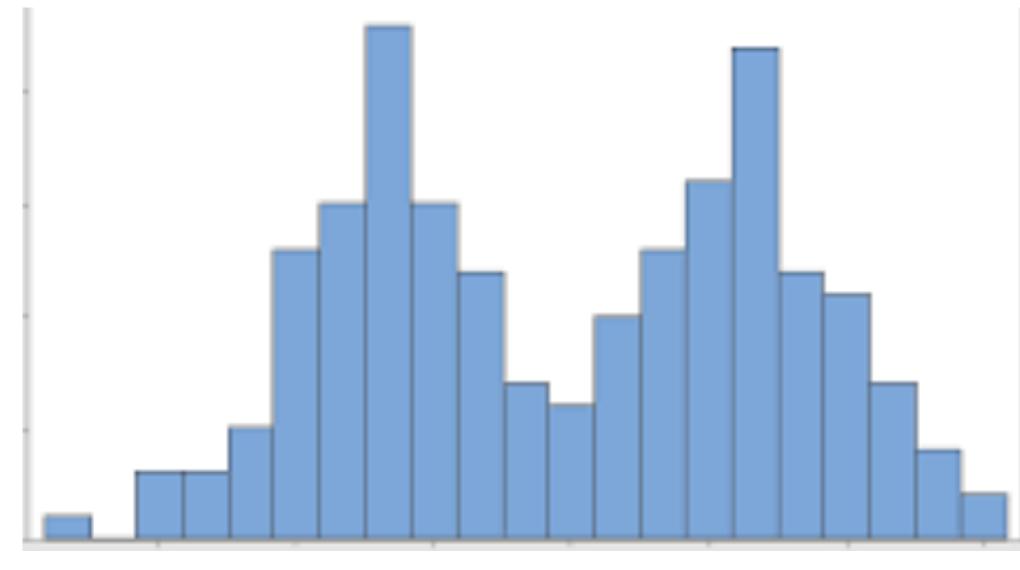
Conditional Expectation Example

- X is the type of a book, 0 for fiction and 1 for non-fiction
 - p(X = 1) is the proportion of all books that are non-fiction
- Y is the number of pages
 - p(Y = 100) is the proportion of all books with 100 pages
- $\mathbb{E}[Y|X=0]$ is different from $\mathbb{E}[Y|X=1]$
 - e.g. $\mathbb{E}[Y|X=0] = 70$ is different from $\mathbb{E}[Y|X=1] = 150$
- Another example: $\mathbb{E}[X|Z=0.3]$ the expected outcome of the coin flip given that the bias is 0.3 ($\mathbb{E}[X|Z=0.3] = 0 \times 0.7 + 1 \times 0.3 = 0.3$)

Conditional Expectation Example (cont)

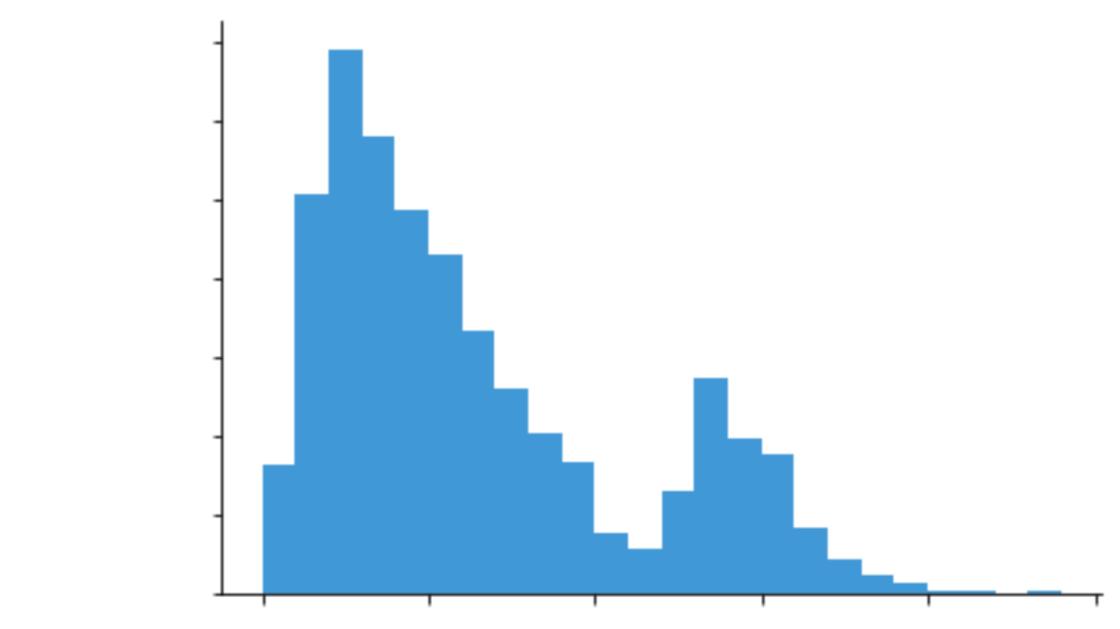
• What do we mean by p(y | X = 0)? How might it differ from p(y | X = 1)

p(y) for X = 0, fiction books



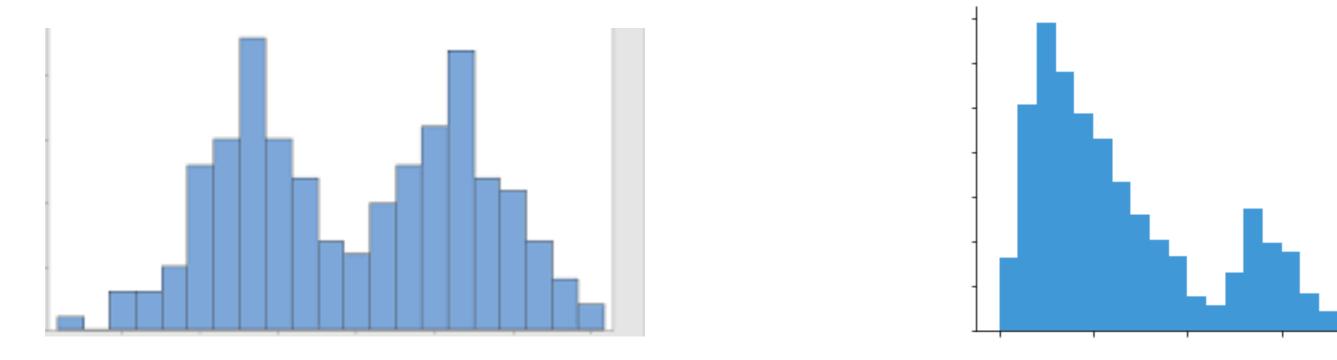
Lots of shorter books

Lots of medium length books p(y) for X = 1, nonfiction books

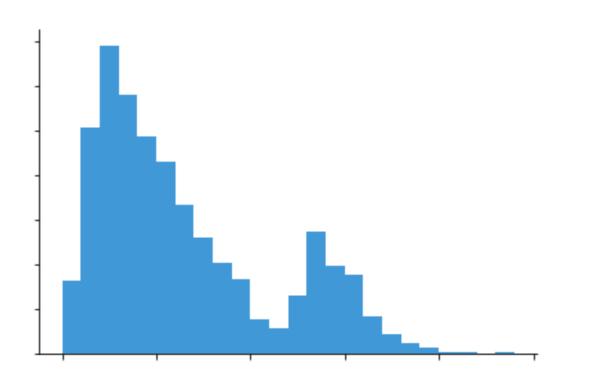


A long tail, a few very long books

Conditional Expectation Example (cont)



• What do we mean by p(y | X = 0)? How might it differ from p(y | X = 1)



• $\mathbb{E}[Y|X=0]$ is the expectation over Y under distribution p(y|X=0)• $\mathbb{E}[Y|X=1]$ is the expectation over Y under distribution p(y|X=1)

Definition: The expected value of Y conditional on X = x is $\mathbb{E}[Y \mid X = x] = \begin{cases} \sum_{y \in \mathscr{Y}} yp(y \mid x) & \text{if } Y \text{ is discrete,} \\ \int_{\mathscr{Y}} yp(y \mid x) \, dy & \text{if } Y \text{ is continuous.} \end{cases}$

Question: What is $\mathbb{E}[Y \mid X]$?

Conditional Expectations

Definition: The expected value of Y conditional on X = x is $\mathbb{E}[Y \mid X = x] = \begin{cases} \sum_{y \in \mathscr{Y}} yp(y \mid x) & \text{if } Y \text{ is discrete,} \\ \int_{\mathscr{Y}} yp(y \mid x) \, dy & \text{if } Y \text{ is continuous.} \end{cases}$

Question: What is $\mathbb{E}[Y \mid X]$? **Answer:** $Z = \mathbb{E}[Y \mid X]$ is a random variable, $z = \mathbb{E}[Y \mid X = x]$ is an outcome

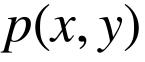
Conditional Expectations

Properties of Expectations

- Linearity of expectation: \bullet
 - $\mathbb{E}[cX] = c\mathbb{E}[X]$ for all constant c
 - $\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y]$
- Products of expectations of independent random variables X, Y:
 - $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$
- Law of Total Expectation:
 - $\mathbb{E}\left[\mathbb{E}\left[Y \mid X\right]\right] = \mathbb{E}[Y]$
- **Question:** How would you prove these?

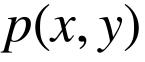
Linearity of Expectation

 $\sum \sum p(x, y)x = \sum \sum p(x, y)x$ $\mathbb{E}[X+Y] = \sum p(x,y)(x+y)$ $y \in \mathcal{Y} \ x \in \mathcal{X} \qquad x \in \mathcal{X} \ y \in \mathcal{Y}$ $(x,y) \in \mathcal{X} \times \mathcal{Y}$ $= \sum x \sum p(x, y) \quad \triangleright p(x) = \sum p(x, y)$ $= \sum \sum p(x, y)(x + y)$ $x \in \mathcal{X} \quad y \in \mathcal{Y}$ $y \in \mathcal{Y}$ $y \in \mathcal{Y} x \in \mathcal{X}$ $=\sum xp(x)$ $= \sum p(x, y)x + \sum p(x, y)y$ $x \in \mathcal{X}$ $= \mathbb{E}[X]$ $v \in \mathcal{Y} \ x \in \mathcal{X} \qquad \qquad v \in \mathcal{Y} \ x \in \mathcal{X}$



Linearity of Expectation

 $\sum \sum p(x, y)x = \sum \sum p(x, y)x$ $\mathbb{E}[X+Y] = \sum p(x,y)(x+y)$ $y \in \mathcal{Y} \ x \in \mathcal{X} \qquad x \in \mathcal{X} \ y \in \mathcal{Y}$ $(x,y) \in \mathcal{X} \times \mathcal{Y}$ $= \sum x \sum p(x, y) \quad \triangleright p(x) = \sum p(x, y)$ $= \sum \sum p(x, y)(x + y)$ $x \in \mathcal{X} \quad y \in \mathcal{Y}$ $y \in \mathcal{Y}$ $y \in \mathcal{Y} x \in \mathcal{X}$ $=\sum xp(x)$ $= \sum p(x, y)x + \sum p(x, y)y$ $x \in \mathcal{X}$ $= \mathbb{E}[X]$ $y \in \mathcal{Y} \ x \in \mathcal{X} \qquad \qquad y \in \mathcal{Y} \ x \in \mathcal{X}$ $= \mathbb{E}[X] + \mathbb{E}[Y]$



What if the RVs are continuous?

E $\mathbb{E}[X+Y] = \sum p(x,y)(x+y)$ $(x,y) \in \mathcal{X} \times \mathcal{Y}$ $= \sum \sum p(x, y)(x + y)$ $y \in \mathcal{Y} x \in \mathcal{X}$ $= \sum \sum p(x, y)x + \sum \sum p(x, y)y$ $y \in \mathcal{Y} \ x \in \mathcal{X} \qquad \qquad y \in \mathcal{Y} \ x \in \mathcal{X}$ $= \mathbb{E}[X] + \mathbb{E}[Y]$

$$\begin{split} [X+Y] &= \int_{\mathcal{X}\times\mathcal{Y}} p(x,y)(x+y)d(x,y) \\ &= \int_{\mathcal{Y}} \int_{\mathcal{X}} p(x,y)(x+y)dxdy \\ &= \int_{\mathcal{Y}} \int_{\mathcal{X}} p(x,y)xdxdy + \int_{\mathcal{Y}} \int_{\mathcal{X}} p(x,y)ydxdy \\ &= \int_{\mathcal{X}} x \int_{\mathcal{Y}} p(x,y)dydx + \int_{\mathcal{Y}} y \int_{\mathcal{X}} p(x,y)dxdy \\ &= \int_{\mathcal{X}} x p(x)dx + \int_{\mathcal{Y}} y p(y)dy \\ &= \mathbb{E}[X] + \mathbb{E}[Y] \end{split}$$



Properties of Expectations

- Linearity of expectation: \bullet
 - $\mathbb{E}[cX] = c\mathbb{E}[X]$ for all constant c
 - $\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y]$
- Products of expectations of independent random variables X, Y:
 - $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$
- Law of Total Expectation:
 - $\mathbb{E}\left[\mathbb{E}\left[Y \mid X\right]\right] = \mathbb{E}[Y]$
- **Question:** How would you prove these?

$$\mathbb{E}[Y] = \sum_{y \in \mathscr{Y}} yp(y) \qquad \text{def. marginal distr}$$

$$= \sum_{y \in \mathscr{Y}} y\sum_{x \in \mathscr{X}} p(x, y) \qquad \text{def. marginal distr}$$

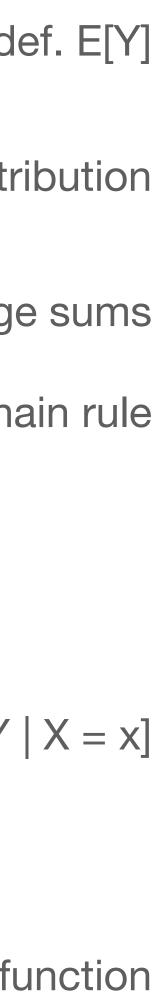
$$= \sum_{x \in \mathscr{X}} \sum_{y \in \mathscr{Y}} yp(x, y) \qquad \text{rearrange}$$

$$= \sum_{x \in \mathscr{X}} \sum_{y \in \mathscr{Y}} yp(y \mid x)p(x) \qquad \text{Cha}$$

$$= \sum_{x \in \mathscr{X}} \left(\sum_{y \in \mathscr{Y}} yp(y \mid x) \right) p(x) \qquad \text{def. E[Y]}$$

$$= \sum_{x \in \mathscr{X}} \left(\mathbb{E}[Y \mid X = x] \right) p(x) \qquad \text{def. E[Y]}$$

$$= \mathbb{E} \left(\mathbb{E}[Y \mid X] \right) \blacksquare \qquad \text{def. expected value of full}$$



Variance

Definition: The **variance** of a random variable is

i.e., $\mathbb{E}[f(X)]$ where $f(x) = (x - \mathbb{E}[X])^2$. Equivalently,

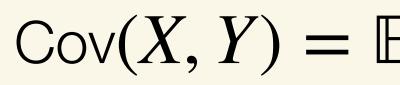
 $Var(X) = \mathbb{E} \left[X^2 \right] - \left(\mathbb{E}[X] \right)^2$

(**why?**)

 $\operatorname{Var}(X) = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right].$

Covariance

Definition: The **covariance** of two random variables is





Large Negative Covariance

Question: What is the range of Cov(X, Y)?

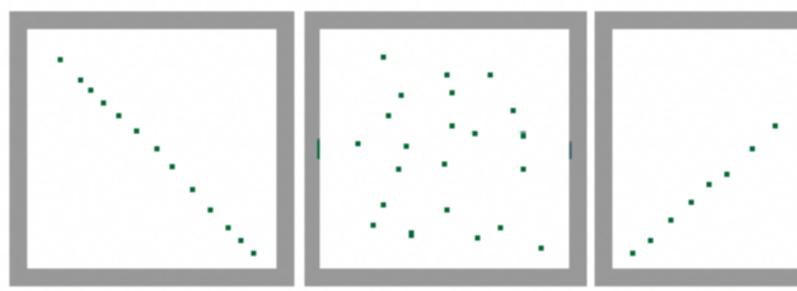
- $\operatorname{Cov}(X, Y) = \mathbb{E}\left[(X \mathbb{E}[X])^2 \right]$ $= \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y].$

Near Zero Covariance

Large Positive Covariance

Correlation

Definition: The **correlation** of two random variables is



Large Negative Covariance

Question: What is the range of Corr(X, Y)? hint: Var(X) = Cov(X, X)

 $Corr(X, Y) = \frac{Cov(X, Y)}{\sqrt{Var(X)Var(Y)}}$

Near Zero Covariance

Large Positive Covariance

- Var[c] = 0 for constant c
- $Var[cX] = c^2 Var[X]$ for constant c
- Var[X + Y] = Var[X] + Var[Y] + 2Cov[X, Y]
- For independent X, Y, Var[X + Y] = Var[X] + Var[Y] (why?)

Properties of Variances

- Independent RVs have zero correlation (**why?**) \bullet hint: $Cov[X, Y] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$
- Uncorrelated RVs (i.e., Cov(X, Y) = 0) might be dependent (i.e., $p(x, y) \neq p(x)p(y)$).
 - Correlation (Pearson's correlation coefficient) shows linear relationships; but can miss nonlinear relationships
 - **Example:** $X \sim \text{Uniform}\{-2, -1, 0, 1, 2\}, Y = X^2$

 - $\mathbb{E}[X] = 0$
 - So $\mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y] = 0 0\mathbb{E}[Y] = 0$

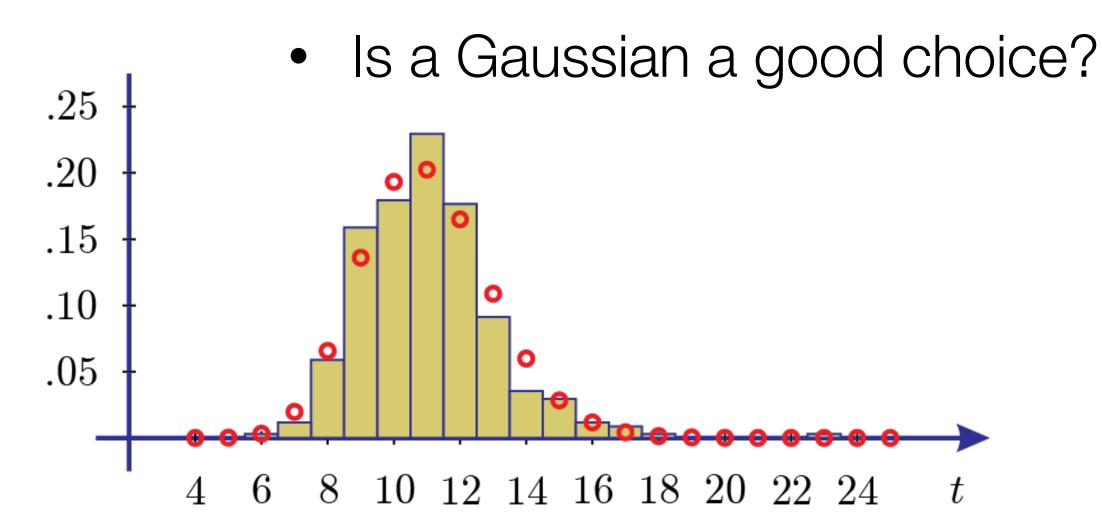
Independence and Decorrelation

• $\mathbb{E}[XY] = .2(-2 \times 4) + .2(2 \times 4) + .2(-1 \times 1) + .2(1 \times 1) + .2(0 \times 0)$

Summary

- Random variables are functions from sample to some value
 - Upshot: A random variable takes different values with some probability
- The value of one variable can be informative about the value of another (because they are both functions of the same sample)
 - Distributions of multiple random variables are described by the joint probability distribution (joint PMF or joint PDF)
 - You can have a new distribution over one variable when you condition on the other
- The expected value of a random variable is an average over its values, weighted by the probability of each value
- The variance of a random variable is the expected squared distance from the mean
- The **covariance** and **correlation** of two random variables can summarize how changes in one are informative about changes in the other.

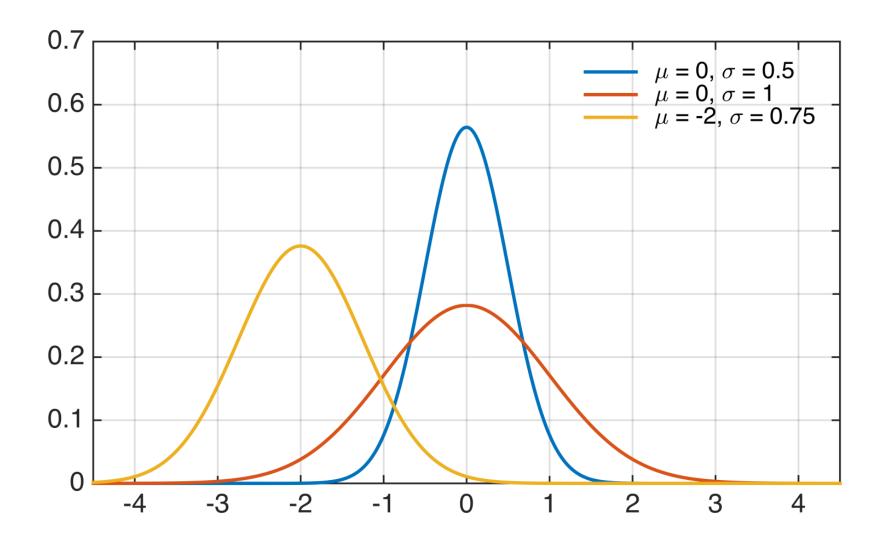
- Let's revisit the commuting example commute times
- We want to model commute time
- What parameters do I have to spe with a Gaussian?



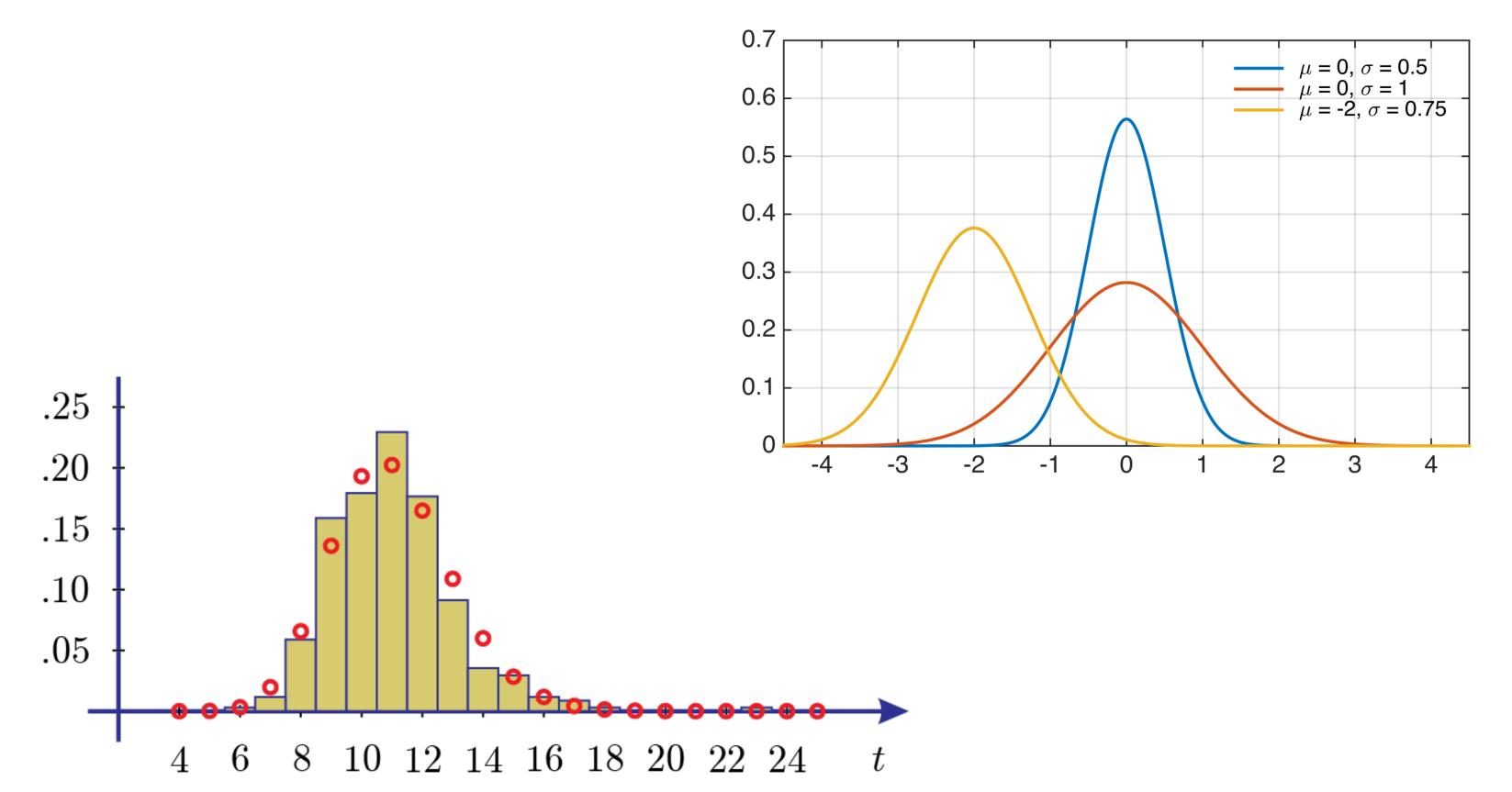
Let's revisit the commuting example, and assume we collect continuous

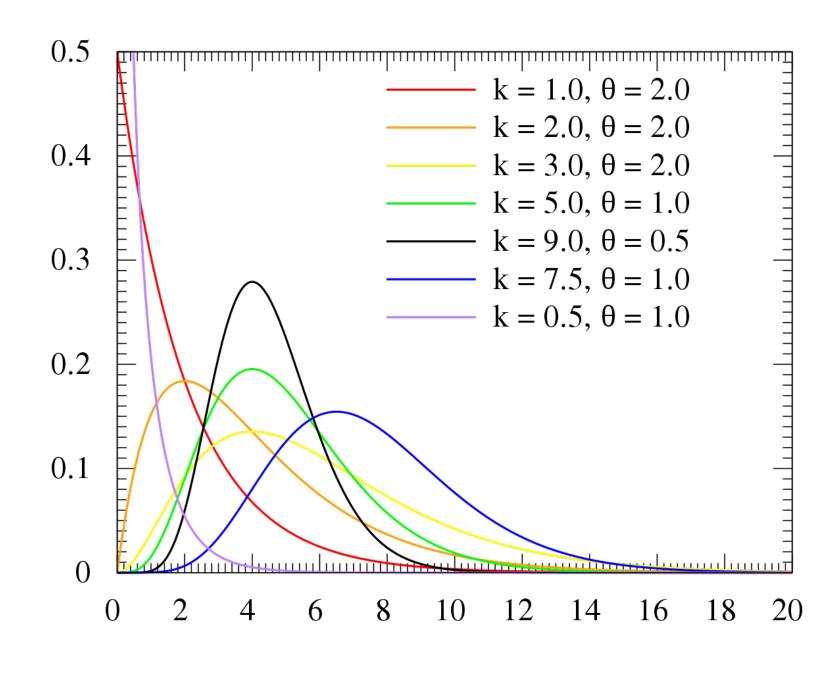
as a Gaussian
$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right)$$

What parameters do I have to specify (or learn) to model commute times

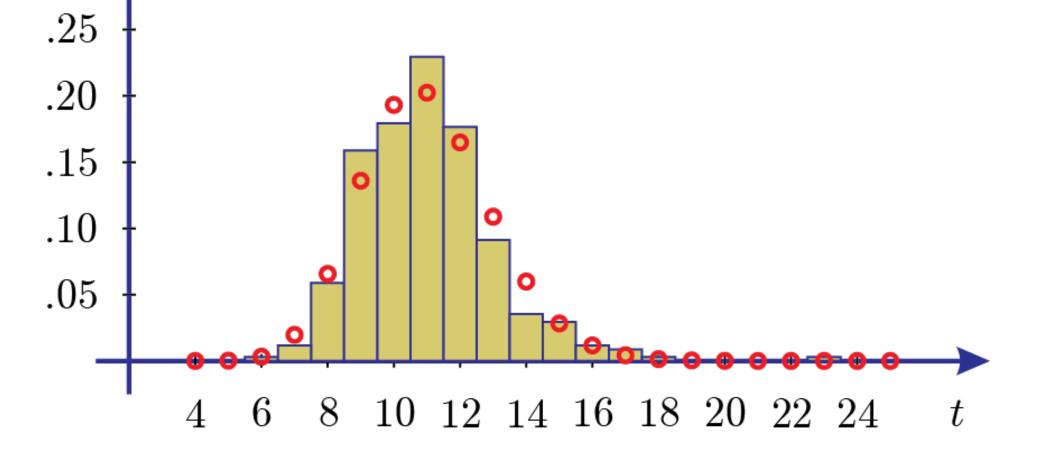


A better choice is actually what is called a Gamma distribution



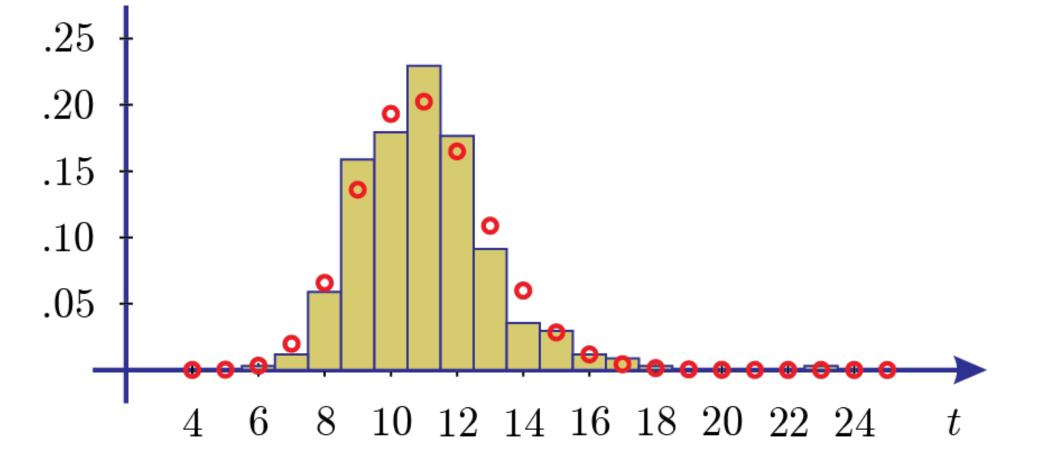


- We can also consider conditional distributions p(y | x)
- Y is the commute time, let X be the month
- Why is it useful to know p(y | X = Feb) and p(y | X = Sept)?
- What else could we use for X and why pick it?



- \bullet

p(y|X =p(y|X =



Let's use a simple X, where it is 1 if it is slippery out and 0 otherwise

Then we could model two Gaussians, one for the two types of conditions

$$0) = \mathcal{N}\left(\mu_0, \sigma_0^2\right)$$
$$1) = \mathcal{N}\left(\mu_1, \sigma_1^2\right)$$

Gaussian denoted by N

