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Announcements
• Please read FAQ document on course webpage. 

• Course information at https://nidhihegde.github.io/mlbasics 

• Assignment due dates 

• TA Office hours - updated 

• Participation - Reading Exercises 

• on eClass;  

• open for a 48 hour period; one hour to complete 

• first one is a practise one - just a pdf, not as a quiz on eClass 

• First one that counts open Monday, closes (due) Tuesday 11:59 pm Tuesday 10am and 
closes Thursday 10am, as mentioned on eClass, and you have 60 minutes to complete it.

https://nidhihegde.github.io/mlbasics
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3. Multiple Random Variables 
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Recap
• Probabilities are a means of quantifying uncertainty 

•  The probability space models an experiment, or a real world process. 

• The sample space  : the set of all possible outcomes of the experiment. 

• The event space , the space of potential results of the experiment. 

• A probability distribution is defined on a measurable space consisting of a sample space 
and an event space.  Any function  that is a probability measure. 

• A probability distribution is defined on a measurable space consisting of a sample space 
and an event space. 

• Discrete sample spaces (and random variables) are defined in terms of probability mass 
functions (PMFs) 

• Continuous sample spaces (and random variables) are defined in terms of probability 
density functions (PDFs)

Ω

ℰ : ℰ ⊆ 𝒫(Ω)

P : ℰ → [0,1]



Discrete vs. Continuous 
Sample Spaces

Continuous (uncountable) outcomes 

 

 

 

 

Typically:  ("Borel field") 

Note:  not 

Ω = [0,1]

Ω = ℝ

Ω = ℝk

ℰ = {∅, [0,0.5], (0.5,1.0], [0,1]}

ℰ = B(Ω)

𝒫(Ω)

Discrete (countable) outcomes 

 

 

 

 

Typically:  

Question: 
?

Ω = {1,2,3,4,5,6}

Ω = {person, woman, man, camera, TV, …}

Ω = ℕ

ℰ = {∅, {1,2}, {3,4,5,6}, {1,2,3,4,5,6}}

ℰ = 𝒫(Ω)

ℰ = {{1}, {2}, {3}, {4}, {5}, {6}}



Random Variables
Rather than referring to the probability space, we refer to probabilities on 
quantities of interest. 

Example: Suppose we observe both a die's number, and where it lands. 

 

We might want to think about the probability that we get a large number, without 
thinking about where it landed.   

We could ask about , where  = the number that comes up. 

Random variables are a way of reasoning about a complicated underlying 
probability space in a more straightforward way. 

Ω = {(left,1), (right,1), (left,2), (right,2), …, (right,6)}

P(X ≥ 4) X



Random Variables, Formally
Given a probability space , a random variable is a function 

 (where  is some other outcome space), satisfying 

. 

It follows that . 

Example: Let  be a population of people, and  = height, and 
. 

.

(Ω, ℰ, P)
X : Ω → ΩX ΩX

{ω ∈ Ω ∣ X(ω) ∈ A} ∈ ℰ ∀A ∈ B(ΩX)

PX(A) = P({ω ∈ Ω ∣ X(ω) ∈ A})

Ω X(ω)
A = [5′ 1′ ′ ,5′ 2′ ′ ]

P(X ∈ A) = P(5′ 1′ ′ ≤ X ≤ 5′ 2′ ′ ) = P({ω ∈ Ω : X(ω) ∈ A})



Random Variables and Events

• A Boolean expression involving random variables defines an event: 
        E.g.,  

• Similarly, every event can be understood as a Boolean random variable: 

         

• From this point onwards, we will exclusively reason in terms of random 
variables rather than probability spaces.

P(X ≥ 4) = P({ω ∈ Ω ∣ X(ω) ≥ 4})

Y = {1 if event A occurred
0 otherwise.



Example: Histograms
Consider the continuous commuting example again, with observations 12.345 
minutes, 11.78213 minutes, etc. 

 

• Question: What is the random variable? 

• Question: How could we turn our observations into a histogram?

.05
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.15

Gamma(31.3, 0.352)

.20

.25
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What About Multiple Variables?
• So far, we've really been thinking about a single random variable at a time 

• Straightforward to define multiple random variables on a single probability space 

Example: Suppose we observe both a die's number, and where it lands. 

 

                  

 

 

Ω = {(left,1), (right,1), (left,2), (right,2), …, (right,6)}

X(ω) = ω2 = number

Y(ω) = {1 if ω1 = left
0 otherwise. } = 1 if landed on left

P(Y = 1) = P({ω ∣ Y(ω) = 1})

P(X ≥ 4 ∧ Y = 1) = P({ω ∣ X(ω) ≥ 4 ∧ Y(ω) = 1})



Joint Distribution
We typically model the interactions of different random variables. 

Joint probability mass function:  

  

Example:  (young, old)   and     (no arthritis, arthritis)

p(x, y) = P(X = x, Y = y)

∑
x∈𝒳

∑
y∈𝒴

p(x, y) = 1

𝒳 = {0,1} 𝒴 = {0,1}

Y=0 Y=1

X=0 P(X=0,Y=0) = 
1/2

P(X=0, Y=1) = 
1/100

X=1 P(X=1, Y=0) = 
1/10

P(X=1, Y=1) = 
39/100



Is this joint distribution valid?
Example:  (young, old)   and     (no arthritis, arthritis)𝒳 = {0,1} 𝒴 = {0,1}

Y=0 Y=1

X=0 P(X=0,Y=0) = 
50/100

P(X=0, Y=1) = 
1/100

X=1 P(X=1, Y=0) = 
10/100

P(X=1, Y=1) = 
39/100

•
Exercise: Check if  ∑

x∈{0,1}
∑

y∈{0,1}

p(x, y) = 1

∑
x∈{0,1}

∑
y∈{0,1}

p(x, y) = 1/2 + 1/100 + 1/10 + 39/100 = 1



Questions About Multiple Variables
Example:  (young, old)   and     (no arthritis, arthritis)𝒳 = {0,1} 𝒴 = {0,1}

Y=0 Y=1

X=0 P(X=0,Y=0) = 
1/2

P(X=0, Y=1) = 
1/100

X=1 P(X=1, Y=0) = 
1/10

P(X=1, Y=1) = 
39/100

• Are these two variables related at all?  Or do they change independently? 
• Given this distribution, can we determine the distribution over just  ?   

I.e., what is ?  (marginal distribution) 
• If we knew something about one variable, does that tell us something about the distribution 

over the other?  E.g., if I know  (person is young), does that tell me the prob. that person 
we know is young has arthritis? (conditional probability )

Y
P(Y = 1)

X = 0
P(Y = 1 ∣ X = 1)



Marginal Distribution for Y
p(Y = 0) = ∑

x∈𝒳

p(x,0) = ∑
x∈{young,old}

p(x,0) p(Y = 1) = ∑
x∈𝒳

p(x,1) = ∑
x∈{young,old}

p(x,1)

More generically


p(y) = ∑
x∈𝒳

p(x, y)

Y=0 Y=1

X=0 P(X=0,Y=0) 
= 1/2

P(X=0, Y=1) 
= 1/100

X=1 P(X=1, Y=0) 
= 1/10

P(X=1, Y=1) 
= 39/100



Back to our example
Example:  (young, old)   and     (no arthritis, arthritis)𝒳 = {0,1} 𝒴 = {0,1}

Y=0 Y=1

X=0 P(X=0,Y=0) = 
50/100

P(X=0, Y=1) = 
1/100

X=1 P(X=1, Y=0) = 
10/100

P(X=1, Y=1) = 
39/100

•
Exercise: Compute marginal p(x) = ∑

y∈{0,1}

p(x, y)



Back to our example (cont)
Example:  (young, old)   and     (no arthritis, arthritis)𝒳 = {0,1} 𝒴 = {0,1}

Y=0 Y=1

X=0 P(X=0,Y=0) = 
1/2

P(X=0, Y=1) = 
1/100

X=1 P(X=1, Y=0) = 
1/10

P(X=1, Y=1) = 
39/100

•
Exercise: Compute marginal , p(x = 1) = ∑

y∈{0,1}

p(x = 1,y) = 49/100

p(x = 0) = 1 − p(x = 1) = 51/100

Y=0 Y=1

X=0 P(X=0,Y=0) = 
50/100

P(X=0, Y=1) = 
1/100

X=1 P(X=1, Y=0) = 
10/100

P(X=1, Y=1) = 
39/100



Marginal distributions
• For two random variables ,  

•
If they are discrete we have  

•
If they are continuous we have  

•
If  is discrete and  is continuous then  

•
If  is continuous and  is discrete then 

X, Y

p(x) = ∑
y∈𝒴

p(x, y)

p(x) = ∫𝒴
p(x, y)dy

X Y p(x) = ∫𝒴
p(x, y)dy

X Y p(x) = ∑
y∈𝒴

p(x, y)



Marginal Distributions
A marginal distribution is defined for a subset of  by summing or integrating 
out the remaining variables.  (We will often say that we are "marginalizing over" 
or "marginalizing out" the remaining variables). 

Discrete case:   

Continuous:  

Question: Why do we write  for  and ? 
• They can't be the same function, they have different domains!

⃗X

p(xi) = ∑
x1∈𝒳1

⋯ ∑
xi−1∈𝒳i−1

∑
xi+1∈𝒳i+1

⋯ ∑
xd∈𝒳d

p(x1, …, xi−1, xi+1, …, xd)

p(xi) = ∫𝒳1

⋯∫𝒳i−1
∫𝒳i+1

⋯∫𝒳d

p(x1, …, xi−1, xi+1, …, xd) dx1…dxi−1dxi+1…dxd

p p(xi) p(x1, …, xd)



Are these really the same function?

• No.  They're not the same function. 
• But they are derived from the same joint distribution. 

• So for brevity we will write ,  and   
• Even though it would be more precise to write something like                       

,  and  

• We can tell which function we're talking about from context (i.e., arguments)

p(x, y) p(x) p(y)

p(x, y) px(x) py(y)



PMFs and PDFs of Many Variables
In general, we can consider a -dimensional random variable  with vector-
valued outcomes , with each  chosen from some .  Then, 

Discrete case: 
 is a (joint) probability mass function if 

  

Continuous case: 
 is a (joint) probability density function if 

 

d ⃗X = (X1, …, Xd)
⃗x = (x1, …, xd) xi 𝒳i

p : 𝒳1 × 𝒳2 × … × 𝒳d → [0,1]

∑
x1∈𝒳1

∑
x2∈𝒳2

⋯ ∑
xd∈𝒳d

p(x1, x2, …, xd) = 1

p : 𝒳1 × 𝒳2 × … × 𝒳d → [0,∞)

∫𝒳1
∫𝒳2

⋯∫𝒳d

p(x1, x2, …, xd) dx1dx2…dxd = 1



Rules of Probability Already Covered 
the Multidimensional Case

Outcome space is  

Outcomes are multidimensional variables  

Discrete case: 
 is a (joint) probability mass function if   

Continuous case: 

 is a (joint) probability density function if   

But useful to recognize that we have multiple variables

𝒳 = 𝒳1 × 𝒳2 × … × 𝒳d

x = [x1, x2, . . . , xd]

p : 𝒳 → [0,1] ∑
x∈𝒳

p(x) = 1

p : 𝒳 → [0,∞) ∫𝒳
p(x) dx = 1



Conditional Distribution

 

This same equation will hold for the corresponding PDF or PMF: 

  

Question: if  is small, does that imply that  is small?

Definition: Conditional probability distribution 

 P(Y = y ∣ X = x) =
P(X = x, Y = y)

P(X = x)

p(y ∣ x) =
p(x, y)
p(x)

p(x, y) p(y ∣ x)



Visualizing the conditional 
distribution

P(X = young |Y = 0) = P(X = young, Y = 0)/P(Y = 0) = (50/100)/(60/100) = 50/60



Chain Rule

From the definition of conditional probability: 

                  

         

   

This is called the Chain Rule.

p(y ∣ x) =
p(x, y)
p(x)

⟺ p(y ∣ x)p(x) =
p(x, y)
p(x)

p(x)

⟺ p(y ∣ x)p(x) = p(x, y)



Multiple Variable Chain Rule
The chain rule generalizes to multiple variables: 

  p(x, y, z) = p(x, y ∣ z)p(z) = p(x ∣ y, z)p(y ∣ z)p(z)

p(y,z)

Definition: Chain rule 

 

p(x1, …, xd) = p(xd)
d−1

∏
i=1

p(xi ∣ xi+1, …xd)

= p(x1)
d

∏
i=2

p(xi ∣ x1, …xi−1)



The Order Does Not Matter

The RVs are not ordered, so we can write 

  

All of these probabilities are equal

p(x, y, z) = p(x ∣ y, z)p(y |z)p(z)
= p(x ∣ y, z)p(z |y)p(y)
= p(y ∣ x, z)p(x |z)p(z)
= p(y ∣ x, z)p(z |x)p(x)
= p(z ∣ x, y)p(y |x)p(x)
= p(z ∣ x, y)p(x |y)p(y)



Bayes' Rule
From the chain rule, we have:  

 

• Often,  is easier to compute than  
• e.g., where  is features and  is label 

p(x, y) = p(y ∣ x)p(x)
= p(x ∣ y)p(y)

p(x ∣ y) p(y ∣ x)
x y

Definition: Bayes' rule 

p(y ∣ x) =
p(x ∣ y)p(y)

p(x)



Bayes' Rule
• Bayes’ rule is typically used to reason about our beliefs, given new 

information 
• Example: a scientist might have a belief about the prevalence of cancer in 

smokers (Y), and update with new evidence (X) 
• In ML: we have a belief over our estimator (Y), and we update with new 

data that is like new evidence (X) 

Definition: Bayes' rule 

p(y ∣ x) =
p(x ∣ y)p(y)

p(x)

Posterior Likelihood Prior

Evidence



Example:  
Drug Test

Example:  

 
p(Test = pos ∣ Drug = T) = 0.99
p(Test = pos ∣ Drug = F) = 0.01

p(Drug = True) = 0.005

Posterior
Likelihood

Prior

Evidence
p(y ∣ x) =

p(x ∣ y)p(y)
p(x)

Mapping to the formula, let 
X be Test  

Y be presence of the drug

Questions: 

1. What is ? 

2. What is ? 

p(Drug = F)

p(Drug = T ∣ Test = pos)



Example:  
Drug Test

Posterior
Likelihood

Prior

Evidence
p(y ∣ x) =

p(x ∣ y)p(y)
p(x)

Questions: 

1. What is ? 

2. What is ? 

p(Drug = F)

p(Drug = T ∣ Test = pos)

Example:  

 
p(Test = pos ∣ Drug = T) = 0.99
p(Test = pos ∣ Drug = F) = 0.01

p(Drug = True) = 0.005

p(Drug = F) = 1 − p(Drug = T) = 1 − 0.005 = 0.995



Example:  
Drug Test

Posterior
Likelihood

Prior

Evidence
p(y ∣ x) =

p(x ∣ y)p(y)
p(x)

p(Drug = T ∣ Test = pos) =
p(Test = pos ∣ Drug = T)p(Drug = T)

p(Test = pos)
Need to compute this part

Questions: 

1. What is ? 

2. What is ? 

p(Drug = F)

p(Drug = T ∣ Test = pos)

Example:  

 
p(Test = pos ∣ Drug = T) = 0.99
p(Test = pos ∣ Drug = F) = 0.01

p(Drug = True) = 0.005



Example:  
Drug Test

Posterior
Likelihood

Prior

Evidence
p(y ∣ x) =

p(x ∣ y)p(y)
p(x)

p(Test = pos) = ∑
d∈{T,F}

p(Test = pos, d)

= p(Test = pos, D = F) + p(Test = pos, D = T)
= p(Test = pos |D = F)p(D = F) + p(Test = pos |D = T)p(D = T)
= 0.03 × 0.995 + 0.99 × 0.005 = 0.0348

Questions: 

1. What is ? 

2. What is ? 

p(Drug = F)

p(Drug = T ∣ Test = pos)

Example:  

 
p(Test = pos ∣ Drug = T) = 0.99
p(Test = pos ∣ Drug = F) = 0.01

p(Drug = True) = 0.005



Example:  
Drug Test

Posterior
Likelihood

Prior

Evidence
p(y ∣ x) =

p(x ∣ y)p(y)
p(x)

p(Test = pos) = 0.0348

p(Drug = T ∣ Test = pos) =
p(Test = pos ∣ Drug = T)p(Drug = T)

p(Test = pos)
=

0.99 × 0.005
0.0348

≈ 0.142

Questions: 

1. What is ? 

2. What is ? 

p(Drug = F)

p(Drug = T ∣ Test = pos)

Example:  

 
p(Test = pos ∣ Drug = T) = 0.99
p(Test = pos ∣ Drug = F) = 0.01

p(Drug = True) = 0.005



Independence of Random Variables

Definition:   and  are independent if: 

  

 and  are conditionally independent given  if: 

X Y

p(x, y) = p(x)p(y)

X Y Z

p(x, y ∣ z) = p(x ∣ z)p(y ∣ z)



Example: Coins 
(Ex. 9 in the course text)

• Suppose you have a biased coin: the probability that it comes up heads is not 
0.5.  Instead, it has some probability to more likely to come up heads. 

• Let  be the bias of the coin, with  and probabilities 
,  and . 

• Question: What other outcome space could we consider? 
• Question: What kind of distribution is this? 
• Question: What other kinds of distribution could we consider? 

• Let  and  be two consecutive flips of the coin 

• Question: Are  and  independent? 

• Question: Are  and  conditionally independent given ?

Z 𝒵 = {0.3,0.5,0.8}
P(Z = 0.3) = 0.7 P(Z = 0.5) = 0.2 P(Z = 0.8) = 0.1

X Y

X Y

X Y Z



Example: Coins (2)

• Now imagine I told you  (i.e., probability of heads is 0.3) 

• Let  and  be two consecutive flips of the coin 

• What is ? What about ? 

• What is ? What about ? 

• Is ? 

• That is, are  and  conditionally independent given ? 

Z = 0.3
X Y

P(X = Heads |Z = 0.3) P(X = Tails |Z = 0.3)
P(Y = Heads |Z = 0.3) P(Y = Tails |Z = 0.3)

P(X = x, Y = y |Z = 0.3) = P(X = x |Z = 0.3)P(Y = y |Z = 0.3)

X Y Z



Example: Coins (3)
• Now imagine we do not know  

• e.g., you randomly grabbed it from a bin of coins with probabilities 
,  and  

• What is ?  

Z

P(Z = 0.3) = 0.7 P(Z = 0.5) = 0.2 P(Z = 0.8) = 0.1
P(X = Heads)

P(X = Heads) = ∑
z∈{0.3,0.5,0.8}

P(X = Heads |Z = z)p(Z = z)

= P(X = Heads |Z = 0.3)p(Z = 0.3)
+P(X = Heads |Z = 0.5)p(Z = 0.5)
+P(X = Heads |Z = 0.8)p(Z = 0.8)
= 0.3 × 0.7 + 0.5 × 0.2 + 0.8 × 0.1 = 0.39



Example: Coins (4)
• Now imagine we do not know  

• e.g., you randomly grabbed it from a bin of coins with probabilities 
,  and  

• Is ?  
• For brevity, lets use h for Heads 

Z

P(Z = 0.3) = 0.7 P(Z = 0.5) = 0.2 P(Z = 0.8) = 0.1
P(X = Heads, Y = Heads) = P(X = Heads)p(Y = Heads)

P(X = h, Y = h) = ∑
z∈{0.3,0.5,0.8}

P(X = h, Y = h |Z = z)p(Z = z)

= ∑
z∈{0.3,0.5,0.8}

P(X = h |Z = z)P(Y = h |Z = z)p(Z = z)



Example: Coins (4)
• ,  and  

• Is ?  

P(Z = 0.3) = 0.7 P(Z = 0.5) = 0.2 P(Z = 0.8) = 0.1
P(X = Heads, Y = Heads) = P(X = Heads)p(Y = Heads)

P(X = h, Y = h) = ∑
z∈{0.3,0.5,0.8}

P(X = h, Y = h |Z = z)p(Z = z)

= ∑
z∈{0.3,0.5,0.8}

P(X = h |Z = z)P(Y = h |Z = z)p(Z = z)

= P(X = h |Z = 0.3)P(Y = h |Z = 0.3)p(Z = 0.3)
+P(X = h |Z = 0.5)P(Y = h |Z = 0.5)p(Z = 0.5)
+P(X = h |Z = 0.8)p(Y = h |Z = 0.8)p(Z = 0.8)
= 0.3 × 0.3 × 0.7 + 0.5 × ×0.5 × 0.2 + 0.8 × 0.8 × 0.1
= 0.177 ≠ 0.39 * 0.39 = 0.1521



Example: Coins (4)

• Let  be the bias of the coin, with  and probabilities 
,  and . 

• Let  and  be two consecutive flips of the coin 

• Question: Are  and  conditionally independent given ?  

• i.e.,  

• Question: Are  and  independent? 

• i.e. 

Z 𝒵 = {0.3,0.5,0.8}
P(Z = 0.3) = 0.7 P(Z = 0.5) = 0.2 P(Z = 0.8) = 0.1

X Y

X Y Z

P(X = x, Y = y |Z = z) = P(X = x |Z = z)P(Y = y |Z = z)

X Y

P(X = x, Y = y) = P(X = x)P(Y = y)



The Distribution Changes Based on 
What We Know

• The coin has some true bias z 

• If we know that bias, we reason about  
• Namely, the probability of x given we know the bias is z 

• If we do not know that bias, then from our perspective the coin 
outcomes follows probabilities  

• The world still flips the coin with bias z 

• Conditional independence is a property of the distribution we are reasoning 
about, not an objective truth about outcomes

P(X = x |Z = z)

P(X = x)



A bit more intuition

• If we do not know that bias, then from our perspective the coin 
outcomes follows probabilities  

• and X and Y are correlated 

• If we know , do we think it’s more likely ? i.e., is 
?

P(X = x, Y = y)

X = h Y = h
P(X = h, Y = h) > P(X = h, Y = t)



Why is independence and 
conditional independence important?
• i.e., how is this relevant 

• Let’s imagine you want to infer (or learn) the bias of the coin, from data 
• data in this case corresponds to a sequence of flips   

• You can ask: 

X1, X2, …, Xn

P(Z = z |X1 = H, X2 = H, X3 = T, …, Xn = H)

0.3 0.5 0.8

p(z)

0.3 0.5 0.8

p(z)
See 10 Heads  

and 2 Tails



More uses for independence 
and conditional independence

• If I told you X = roof type was independent of Y = house price, would you 
use X as a feature to predict Y? 

• Imagine you want to predict Y = Has Lung Cancer and you have an indirect 
correlation with X = Location since in Location 1 more people smoke on 
average. If you could measure Z = Smokes, then X and Y would be 
conditionally independent given Z. 

• Suggests you could look for such causal variables, that explain these 
correlations  

• We will see the utility of conditional independence for learning models 



Expected Value

The expected value of a random variable is the weighted average of that 
variable over its domain. 

Definition: Expected value of a random variable 

 𝔼[X] = {
∑x∈𝒳 xp(x) if X is discrete

∫
𝒳

xp(x) dx if X is continuous.



Relationship to Population Average 
and Sample Average

• Or Population Mean and Sample Mean 

• Population Mean = Expected Value, Sample Mean estimates this number 
• e.g., Population Mean = average height of the entire population 

• For RV X = height, p(x) gives the probability that a randomly selected person 
has height x 

• Sample average: you randomly sample n heights from the population  
• implicitly you are sampling heights proportionally to p 

• As n gets bigger, the sample average approaches the true expected value



Connection to Sample Average
• Imagine we have a biased coin, p(x = 1) = 0.75, p(x = 0) = 0.25 

• Imagine we flip this coin 1000 times, and see (x = 1) 700 times 

• The sample average is

 

• The true expected value is 

1
1000

1000

∑
i=1

xi =
1

1000 ∑
i:xi=0

xi + ∑
i:xi=1

xi = 0 ×
300
1000

+ 1 ×
700

1000
= = 0 × 0.3 + 1 × 0.7 = 0.7

∑
x∈{0,1}

p(x)x = 0 × p(x = 0) + 1p(x = 1) = 0 × 0.25 + 1 × 0.75 = 0.75



Expected Value with Functions
The expected value of a function  of a random variable is the 
weighted average of that function's value over the domain of the variable. 

 
Example: 
Suppose you get $10 if heads is flipped, or lose $3 if tails is flipped. 
What are your winnings on expectation?

f : 𝒳 → ℝ

Definition: Expected value of a function of a random variable 

 𝔼[ f(X)] = {
∑x∈𝒳 f(x)p(x) if X is discrete

∫
𝒳

f(x)p(x) dx if X is continuous.



Expected Value Example
Example: 
Suppose you get $10 if heads is flipped, or lose $3 if tails is flipped. 
What are your winnings on expectation? 

, 1 for heads and 0 for tails 

 

 

X is the outcome of the coin flip

f(x) = {3 if x = 0
10 if x = 1

Y = f(X) is a new random variable
𝔼[Y] = 𝔼[ f(X)] = ∑

x∈𝒳

f(x)p(x) = f(0)p(0) + f(1)p(1) = .5 × 3 + .5 × 10 = 6.5



One More Example
Suppose  

 

. We see  each time we observe 1, 2 or 3. 
We see  each time we observe 4, 5, or 6. 

X is the outcome of a dice role

f(x) = {−1 if x ≤ 3
1 if x ≥ 4

Y = f(X) is a new random variable Y = − 1
Y = 1

𝔼[Y] = 𝔼[ f(X)] = ∑
x∈𝒳

f(x)p(x)

= (−1)(p(X = 1) + p(X = 2) + p(X = 3))
+ (1)(p(X = 4) + p(X = 5) + p(X = 6))



One More Example
Suppose  

 

. We see  each time we observe 1, 2 or 3. 
We see  each time we observe 4, 5, or 6. 

X is the outcome of a dice role

f(x) = {−1 if x ≤ 3
1 if x ≥ 4

Y = f(X) is a new random variable Y = − 1
Y = 1

𝔼[Y] = 𝔼[ f(X)] = ∑
x∈𝒳

f(x)p(x) = ∑
y∈{−1,1}

yp(y)

= (−1)(p(X = 1) + p(X = 2) + p(X = 3))
+ (1)(p(X = 4) + p(X = 5) + p(X = 6)) = − 1(0.5) + 1(0.5)

p(Y = − 1) = p(X = 1) + p(X = 2) + p(X = 3) = 0.5

p(Y = 1) = p(X = 4) + p(X = 5) + p(X = 6) = 0.5

Summing over x with p(x) is equivalent, and simpler (no need to infer p(y))



Expected Value is a Lossy Summary

1 2 3 4 51 2 3 4 5

𝔼[X] = 3 𝔼[X] = 3

𝔼[X2] ≃ 10 𝔼[X2] ≃ 12

X X

P(
X

)

P(
X

)



Conditional Expectations

 

Question: What is ?

Definition: 
The expected value of  conditional on  is Y X = x

𝔼[Y ∣ X = x] =
∑y∈𝒴 yp(y ∣ x) if Y is discrete,

∫
𝒴

yp(y ∣ x) dy if Y is continuous.

𝔼[Y ∣ X]



Conditional Expectation Example
•  is the type of a book, 0 for fiction and 1 for non-fiction 

•  is the proportion of all books that are non-fiction 

•  is the number of pages  
•  is the proportion of all books with 100 pages 

•  is different from  
• e.g.  is different from  

• Another example:  the expected outcome of the coin flip 
given that the bias is 0.3 ( )

X
p(X = 1)

Y
p(Y = 100)

𝔼[Y |X = 0] 𝔼[Y |X = 1]
𝔼[Y |X = 0] = 70 𝔼[Y |X = 1] = 150

𝔼[X |Z = 0.3]
𝔼[X |Z = 0.3] = 0 × 0.7 + 1 × 0.3 = 0.3



Conditional Expectation Example (cont)
• What do we mean by ? How might it differ from p(y |X = 0) p(y |X = 1)

Lots of shorter books
Lots of medium 

length books
A long tail, a few very long books

p(y) for X = 0, fiction books p(y) for X = 1, nonfiction books



Conditional Expectation Example (cont)

• What do we mean by ? How might it differ from  

•  is the expectation over  under distribution  

•  is the expectation over  under distribution 

p(y |X = 0) p(y |X = 1)

𝔼[Y |X = 0] Y p(y |X = 0)

𝔼[Y |X = 1] Y p(y |X = 1)



Conditional Expectations

 

Question: What is ?

Definition: 
The expected value of  conditional on  is Y X = x

𝔼[Y ∣ X = x] =
∑y∈𝒴 yp(y ∣ x) if Y is discrete,

∫
𝒴

yp(y ∣ x) dy if Y is continuous.

𝔼[Y ∣ X]



Conditional Expectations

 

Question: What is ? 
Answer:  is a random variable,  is an outcome

Definition: 
The expected value of  conditional on  is Y X = x

𝔼[Y ∣ X = x] =
∑y∈𝒴 yp(y ∣ x) if Y is discrete,

∫
𝒴

yp(y ∣ x) dy if Y is continuous.

𝔼[Y ∣ X]
Z = 𝔼[Y ∣ X] z = 𝔼[Y ∣ X = x]



Properties of Expectations
• Linearity of expectation: 

•  for all constant  
•  

• Products of expectations of independent 
random variables : 

•  

• Law of Total Expectation: 

•  

• Question: How would you prove these?

𝔼[cX] = c𝔼[X] c
𝔼[X + Y] = 𝔼[X] + 𝔼[Y]

X, Y
𝔼[XY] = 𝔼[X]𝔼[Y]

𝔼 [𝔼 [Y ∣ X]] = 𝔼[Y]



Linearity of Expectation

𝔼[X + Y] = ∑
(x,y)∈𝒳×𝒴

p(x, y)(x + y)

= ∑
y∈𝒴

∑
x∈𝒳

p(x, y)(x + y)

= ∑
y∈𝒴

∑
x∈𝒳

p(x, y)x + ∑
y∈𝒴

∑
x∈𝒳

p(x, y)y

∑
y∈𝒴

∑
x∈𝒳

p(x, y)x = ∑
x∈𝒳

∑
y∈𝒴

p(x, y)x

= ∑
x∈𝒳

x ∑
y∈𝒴

p(x, y) ▹ p(x) = ∑
y∈𝒴

p(x, y)

= ∑
x∈𝒳

xp(x)

= 𝔼[X]



Linearity of Expectation

𝔼[X + Y] = ∑
(x,y)∈𝒳×𝒴

p(x, y)(x + y)

= ∑
y∈𝒴

∑
x∈𝒳

p(x, y)(x + y)

= ∑
y∈𝒴

∑
x∈𝒳

p(x, y)x + ∑
y∈𝒴

∑
x∈𝒳

p(x, y)y

= 𝔼[X] + 𝔼[Y]

∑
y∈𝒴

∑
x∈𝒳

p(x, y)x = ∑
x∈𝒳

∑
y∈𝒴

p(x, y)x

= ∑
x∈𝒳

x ∑
y∈𝒴

p(x, y) ▹ p(x) = ∑
y∈𝒴

p(x, y)

= ∑
x∈𝒳

xp(x)

= 𝔼[X]



What if the RVs are continuous?
𝔼[X + Y] = ∑

(x,y)∈𝒳×𝒴

p(x, y)(x + y)

= ∑
y∈𝒴

∑
x∈𝒳

p(x, y)(x + y)

= ∑
y∈𝒴

∑
x∈𝒳

p(x, y)x + ∑
y∈𝒴

∑
x∈𝒳

p(x, y)y

= 𝔼[X] + 𝔼[Y]

𝔼[X + Y] = ∫𝒳×𝒴
p(x, y)(x + y)d(x, y)

= ∫𝒴 ∫𝒳
p(x, y)(x + y)dxdy

= ∫𝒴 ∫𝒳
p(x, y)xdxdy + ∫𝒴 ∫𝒳

p(x, y)ydxdy

= ∫𝒳
x∫𝒴

p(x, y)dydx + ∫𝒴
y∫𝒳

p(x, y)dxdy

= ∫𝒳
xp(x)dx + ∫𝒴

yp(y)dy

= 𝔼[X] + 𝔼[Y]



Properties of Expectations
• Linearity of expectation: 

•  for all constant  
•  

• Products of expectations of independent 
random variables : 

•  

• Law of Total Expectation: 

•  

• Question: How would you prove these?

𝔼[cX] = c𝔼[X] c
𝔼[X + Y] = 𝔼[X] + 𝔼[Y]

X, Y
𝔼[XY] = 𝔼[X]𝔼[Y]

𝔼 [𝔼 [Y ∣ X]] = 𝔼[Y]

 

 

 

 

 

 

 

𝔼[Y ] = ∑
y∈𝒴

yp(y)

𝔼[Y ] = ∑
y∈𝒴

y ∑
x∈𝒳

p(x, y)

𝔼[Y ] = ∑
x∈𝒳

∑
y∈𝒴

yp(x, y)

𝔼[Y ] = ∑
x∈𝒳

∑
y∈𝒴

yp(y ∣ x)p(x)

𝔼[Y ] = ∑
x∈𝒳

∑
y∈𝒴

yp(y ∣ x) p(x)

𝔼[Y ] = ∑
x∈𝒳

(𝔼[Y ∣ X = x]) p(x)

𝔼[Y ] = ∑
x∈𝒳

(𝔼[Y ∣ X = x]) p(x)

𝔼[Y ] = 𝔼 (𝔼[Y ∣ X]) ∎

def. marginal distribution

def. E[Y]

rearrange sums

Chain rule

def. E[Y | X = x]

def. expected value of function



Variance

 

i.e.,  where . 

Equivalently, 

  

 (why?)

Definition: The variance of a random variable is 

.Var(X) = 𝔼 [(X − 𝔼[X])2]

𝔼[ f(X)] f(x) = (x − 𝔼[X])2

Var(X) = 𝔼 [X2] − (𝔼[X])2



Covariance

 

 
Question: What is the range of ?

Definition: The covariance of two random variables is 

 
Cov(X, Y) = 𝔼 [(X − 𝔼[X])2]

= 𝔼[XY] − 𝔼[X]𝔼[Y] .

Cov(X, Y)



Correlation

 

 
Question: What is the range of ? 
hint: 

Definition: The correlation of two random variables is 

 Corr(X, Y) =
Cov(X, Y)
Var(X)Var(Y)

Corr(X, Y)
Var(X) = Cov(X, X)



Properties of Variances

•  for constant  

•  for constant  

•  

• For independent ,  
 (why?)

Var[c] = 0 c

Var[cX] = c2Var[X] c

Var[X + Y] = Var[X] + Var[Y] + 2Cov[X, Y]

X, Y
Var[X + Y] = Var[X] + Var[Y]



Independence and Decorrelation
• Independent RVs have zero correlation (why?) 

        hint:  

• Uncorrelated RVs (i.e., ) might be dependent  
(i.e., ). 
• Correlation (Pearson's correlation coefficient) shows linear relationships; but can 

miss nonlinear relationships 
• Example: ,  

•  
•  
• So 

Cov[X, Y] = 𝔼[XY] − 𝔼[X]𝔼[Y]

Cov(X, Y) = 0
p(x, y) ≠ p(x)p(y)

X ∼ Uniform{−2, − 1,0,1,2} Y = X2

𝔼[XY] = .2(−2 × 4) + .2(2 × 4) + .2(−1 × 1) + .2(1 × 1) + .2(0 × 0)
𝔼[X] = 0

𝔼[XY] − 𝔼[X]𝔼[Y] = 0 − 0𝔼[Y] = 0



Summary
• Random variables are functions from sample to some value 

• Upshot: A random variable takes different values with some probability 

• The value of one variable can be informative about the value of another 
(because they are both functions of the same sample) 

• Distributions of multiple random variables are described by the joint probability 
distribution (joint PMF or joint PDF) 

• You can have a new distribution over one variable when you condition on the other 

• The expected value of a random variable is an average over its values, weighted by the 
probability of each value 

• The variance of a random variable is the expected squared distance from the mean 

• The covariance and correlation of two random variables can summarize how changes in 
one are informative about changes in the other.



Exercise applying your knowledge
• Let’s revisit the commuting example, and assume we collect continuous 

commute times 

• We want to model commute time as a Gaussian  

• What parameters do I have to specify (or learn) to model commute times 
with a Gaussian? 

• Is a Gaussian a good choice?

p(x) =
1

2πσ2
exp (−

1
2σ2

(x − μ)2)



Exercise applying your knowledge

• A better choice is actually what is called a Gamma distribution



Exercise applying your knowledge

• We can also consider conditional distributions  

•  is the commute time, let  be the month 

• Why is it useful to know  and ? 

• What else could we use for  and why pick it?

p(y |x)

Y X

p(y |X = Feb) p(y |X = Sept)

X



Exercise applying your knowledge

• Let’s use a simple , where it is 1 if it is slippery out and 0 otherwise 

• Then we could model two Gaussians, one for the two types of conditions

X

p(y|X = 0) = N
�
µ0,�

2
0

�

p(y|X = 1) = N
�
µ1,�

2
1

�
<latexit sha1_base64="urhoOP+QZFfszXmFHWgTPXYAT+k="></latexit>

Gaussian denoted by N


