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Recap
• Random variables are functions from sample to some value 

• Upshot: A random variable takes different values with some probability 

• The value of one variable can be informative about the value of another 
(because they are both functions of the same sample) 

• Distributions of multiple random variables are described by the joint 
probability distribution (joint PMF or joint PDF) 

• Conditioning on a random variable gives a new distribution over others 
• Bayes’ Rule 

p(y ∣ x) =
p(x ∣ y)p(y)

p(x)



Independence of Random Variables

Definition:   and  are independent if: 

  

 and  are conditionally independent given  if: 

X Y

p(x, y) = p(x)p(y)

X Y Z

p(x, y ∣ z) = p(x ∣ z)p(y ∣ z)



Example: Coins
• Suppose you have a biased coin: the probability that it comes up heads is not 0.5.  

Instead, there is a bias -  there is a probability to more likely to come up heads. 

• Let  be the bias of the coin, with  and probabilities 
,  and . 

• Let  and  be two consecutive flips of the coin 

Z 𝒵 = {0.3,0.5,0.8}
P(Z = 0.3) = 0.7 P(Z = 0.5) = 0.2 P(Z = 0.8) = 0.1

X Y

Questions: 
• What other outcome space 

could we consider? 
• What kind of distribution is this? 
• What other kinds of distributions 

could we consider? 

• Are  and  independent? 

• Are  and  conditionally 
independent given ?

X Y

X Y
Z(Ex 9 in the course text)



Example: Coins (2)

• Now imagine I told you  (i.e., probability of heads is 0.3) 

• Let  and  be two consecutive flips of the coin 

• What is ? What about ? 

• What is ? What about ? 

• Is ? 

Z = 0.3
X Y

P(X = Heads |Z = 0.3) P(X = Tails |Z = 0.3)
P(Y = Heads |Z = 0.3) P(Y = Tails |Z = 0.3)

P(X = x, Y = y |Z = 0.3) = P(X = x |Z = 0.3)P(Y = y |Z = 0.3)



Example: Coins (3)
• Now imagine we do not know  

• e.g., you randomly grabbed it from a bin of coins with probabilities 
,  and  

• What is ?  

Z

P(Z = 0.3) = 0.7 P(Z = 0.5) = 0.2 P(Z = 0.8) = 0.1
P(X = Heads)

P(X = h) = ∑
z∈{0.3,0.5,0.8}

P(X = h |Z = z)p(Z = z)

= P(X = h |Z = 0.3)p(Z = 0.3)
+P(X = h |Z = 0.5)p(Z = 0.5)
+P(X = h |Z = 0.8)p(Z = 0.8)
= 0.3 × 0.7 + 0.5 × 0.2 + 0.8 × 0.1 = 0.39



Example: Coins (4)
• Now imagine we do not know  

• e.g., you randomly grabbed it from a bin of coins with probabilities 
,  and  

• Is ?  

Z

P(Z = 0.3) = 0.7 P(Z = 0.5) = 0.2 P(Z = 0.8) = 0.1
P(X = Heads, Y = Heads) = P(X = Heads)p(Y = Heads)

P(X = h, Y = h) = ∑
z∈{0.3,0.5,0.8}

P(X = h, Y = h |Z = z)p(Z = z)

= ∑
z∈{0.3,0.5,0.8}

P(X = h |Z = z)P(Y = h |Z = z)p(Z = z)



Example: Coins (4)

• Let  be the bias of the coin, with  and probabilities 
,  and . 

• Let  and  be two consecutive flips of the coin 

• Question: Are  and  conditionally independent given ?  

• i.e.,  

• Question: Are  and  independent? 

• i.e. 

Z 𝒵 = {0.3,0.5,0.8}
P(Z = 0.3) = 0.7 P(Z = 0.5) = 0.2 P(Z = 0.8) = 0.1

X Y

X Y Z

P(X = x, Y = y |Z = z) = P(X = x |Z = z)P(Y = y |Z = z)

X Y

P(X = x, Y = y) = P(X = x)P(Y = y)



The Distribution Changes Based on 
What We Know

• The coin has some true bias z 

• If we know that bias, we reason about  
• Namely, the probability of x given we know the bias is z 

• If we do not know that bias, then from our perspective the coin 
outcomes follows probabilities  

• The world still flips the coin with bias z 

• Conditional independence is a property of the distribution we are reasoning 
about, not an objective truth about outcomes

P(X = x |Z = z)

P(X = x)



Why is independence and 
conditional independence important?
• If I told you X = roof type was independent of Y = house price, would you 

use X as a feature to predict Y? 

• Imagine you want to predict Y = Has Lung Cancer and you have an indirect 
correlation with X = Location since in Location 1 more people smoke on 
average. If you could measure Z = Smokes, then X and Y would be 
conditionally independent given Z. 

• Suggests you could look for such causal variables, that explain these 
correlations  

• We will see the utility of conditional independence for learning models 



Expected Value

The expected value of a random variable is the weighted average of that 
variable over its domain. 

Definition: Expected value of a random variable 

 𝔼[X] = {
∑x∈𝒳 xp(x) if X is discrete

∫
𝒳

xp(x) dx if X is continuous.



Relationship to Population Average 
and Sample Average

• Or Population Mean and Sample Mean 

• Population Mean = Expected Value, Sample Mean estimates this number 
• e.g., Population Mean = average height of the entire population 

• For RV X = height, p(x) gives the probability that a randomly selected person 
has height x 

• Sample average: you randomly sample n heights from the population  
• implicitly you are sampling heights proportionally to p 

• As n gets bigger, the sample average approaches the true expected value



Connection to Sample Average
• Imagine we have a biased coin, p(x = 1) = 0.75, p(x = 0) = 0.25 

• Imagine we flip this coin 1000 times, and see (x = 1) 700 times 

• The sample average is

 

• The true expected value is 

1
1000

1000

∑
i=1

xi =
1

1000 ∑
i:xi=0

xi + ∑
i:xi=1

xi = 0 ×
300
1000

+ 1 ×
700

1000
= = 0 × 0.3 + 1 × 0.7 = 0.7

∑
x∈{0,1}

p(x)x = 0 × p(x = 0) + 1p(x = 1) = 0 × 0.25 + 1 × 0.75 = 0.75



Expected Value with Functions
The expected value of a function  of a random variable is the 
weighted average of that function's value over the domain of the variable. 

 
Example: 
Suppose you get $10 if heads is flipped, or lose $3 if tails is flipped. 
What are your winnings on expectation?

f : 𝒳 → ℝ

Definition: Expected value of a function of a random variable 

 𝔼[ f(X)] = {
∑x∈𝒳 f(x)p(x) if X is discrete

∫
𝒳

f(x)p(x) dx if X is continuous.



Expected Value Example
Example: 
Suppose you get $10 if heads is flipped, or lose $3 if tails is flipped. 
What are your winnings on expectation? 

, 1 for heads and 0 for tails 

 

 

X is the outcome of the coin flip

f(x) = {3 if x = 0
10 if x = 1

Y = f(X) is a new random variable
𝔼[Y] = 𝔼[ f(X)] = ∑

x∈𝒳

f(x)p(x) = f(0)p(0) + f(1)p(1) = .5 × 3 + .5 × 10 = 6.5



One More Example
Suppose  

 

. We see  each time we observe 1, 2 or 3. 
We see  each time we observe 4, 5, or 6. 

X is the outcome of a dice role

f(x) = {−1 if x ≤ 3
1 if x ≥ 4

Y = f(X) is a new random variable Y = − 1
Y = 1

𝔼[Y] = 𝔼[ f(X)] = ∑
x∈𝒳

f(x)p(x)

= (−1)(p(X = 1) + p(X = 2) + p(X = 3))
+ (1)(p(X = 4) + p(X = 5) + p(X = 6))



One More Example
Suppose  

 

. We see  each time we observe 1, 2 or 3. 
We see  each time we observe 4, 5, or 6. 

X is the outcome of a dice role

f(x) = {−1 if x ≤ 3
1 if x ≥ 4

Y = f(X) is a new random variable Y = − 1
Y = 1

𝔼[Y] = 𝔼[ f(X)] = ∑
x∈𝒳

f(x)p(x) = ∑
y∈{−1,1}

yp(y)

= (−1)(p(X = 1) + p(X = 2) + p(X = 3))
+ (1)(p(X = 4) + p(X = 5) + p(X = 6)) = − 1(0.5) + 1(0.5)

p(Y = − 1) = p(X = 1) + p(X = 2) + p(X = 3) = 0.5

p(Y = 1) = p(X = 4) + p(X = 5) + p(X = 6) = 0.5

Summing over x with p(x) is equivalent, and simpler (no need to infer p(y))



Conditional Expectations

 

Question: What is ?

Definition: 
The expected value of  conditional on  is Y X = x

𝔼[Y ∣ X = x] =
∑y∈𝒴 yp(y ∣ x) if Y is discrete,

∫
𝒴

yp(y ∣ x) dy if Y is continuous.

𝔼[Y ∣ X]



Conditional Expectations

 

Question: What is ? 
Answer:  is a random variable,  is an outcome 

Definition: 
The expected value of  conditional on  is Y X = x

𝔼[Y ∣ X = x] =
∑y∈𝒴 yp(y ∣ x) if Y is discrete,

∫
𝒴

yp(y ∣ x) dy if Y is continuous.

𝔼[Y ∣ X]
Z = 𝔼[Y ∣ X] z = 𝔼[Y ∣ X = x]

Question:  What is  ?𝔼[𝔼[Y ∣ X]]



Properties of Expectations
• Linearity of expectation: 

•  for all constant  
•  

• Products of expectations of independent 
random variables : 

•  

• Law of Total Expectation: 

•  

• Question: How would you prove these?

𝔼[cX] = c𝔼[X] c
𝔼[X + Y] = 𝔼[X] + 𝔼[Y]

X, Y
𝔼[XY] = 𝔼[X]𝔼[Y]

𝔼 [𝔼 [Y ∣ X]] = 𝔼[Y]



Linearity of Expectation

𝔼[X + Y] = ∑
(x,y)∈𝒳×𝒴

p(x, y)(x + y)

= ∑
y∈𝒴

∑
x∈𝒳

p(x, y)(x + y)

= ∑
y∈𝒴

∑
x∈𝒳

p(x, y)x + ∑
y∈𝒴

∑
x∈𝒳

p(x, y)y

∑
y∈𝒴

∑
x∈𝒳

p(x, y)x = ∑
x∈𝒳

∑
y∈𝒴

p(x, y)x

= ∑
x∈𝒳

x ∑
y∈𝒴

p(x, y) ▹ p(x) = ∑
y∈𝒴

p(x, y)

= ∑
x∈𝒳

xp(x)

= 𝔼[X]



Linearity of Expectation

𝔼[X + Y] = ∑
(x,y)∈𝒳×𝒴

p(x, y)(x + y)

= ∑
y∈𝒴

∑
x∈𝒳

p(x, y)(x + y)

= ∑
y∈𝒴

∑
x∈𝒳

p(x, y)x + ∑
y∈𝒴

∑
x∈𝒳

p(x, y)y

= 𝔼[X] + 𝔼[Y]

∑
y∈𝒴

∑
x∈𝒳

p(x, y)x = ∑
x∈𝒳

∑
y∈𝒴

p(x, y)x

= ∑
x∈𝒳

x ∑
y∈𝒴

p(x, y) ▹ p(x) = ∑
y∈𝒴

p(x, y)

= ∑
x∈𝒳

xp(x)

= 𝔼[X]



What if the RVs are continuous?
𝔼[X + Y] = ∑

(x,y)∈𝒳×𝒴

p(x, y)(x + y)

= ∑
y∈𝒴

∑
x∈𝒳

p(x, y)(x + y)

= ∑
y∈𝒴

∑
x∈𝒳

p(x, y)x + ∑
y∈𝒴

∑
x∈𝒳

p(x, y)y

= 𝔼[X] + 𝔼[Y]

𝔼[X + Y] = ∫𝒳×𝒴
p(x, y)(x + y)d(x, y)

= ∫𝒴 ∫𝒳
p(x, y)(x + y)dxdy

= ∫𝒴 ∫𝒳
p(x, y)xdxdy + ∫𝒴 ∫𝒳

p(x, y)ydxdy

= ∫𝒳
x∫𝒴

p(x, y)dydx + ∫𝒴
y∫𝒳

p(x, y)dxdy

= ∫𝒳
xp(x)dx + ∫𝒴

yp(y)dy

= 𝔼[X] + 𝔼[Y]



Properties of Expectations
• Linearity of expectation: 

•  for all constant  
•  

• Products of expectations of independent 
random variables : 

•  

• Law of Total Expectation: 

•  

• Question: How would you prove these?

𝔼[cX] = c𝔼[X] c
𝔼[X + Y] = 𝔼[X] + 𝔼[Y]

X, Y
𝔼[XY] = 𝔼[X]𝔼[Y]

𝔼 [𝔼 [Y ∣ X]] = 𝔼[Y]

 

 

 

 

 

 

 

𝔼[Y ] = ∑
y∈𝒴

yp(y)

𝔼[Y ] = ∑
y∈𝒴

y ∑
x∈𝒳

p(x, y)

𝔼[Y ] = ∑
x∈𝒳

∑
y∈𝒴

yp(x, y)

𝔼[Y ] = ∑
x∈𝒳

∑
y∈𝒴

yp(y ∣ x)p(x)

𝔼[Y ] = ∑
x∈𝒳

∑
y∈𝒴

yp(y ∣ x) p(x)

𝔼[Y ] = ∑
x∈𝒳

(𝔼[Y ∣ X = x]) p(x)

𝔼[Y ] = ∑
x∈𝒳

(𝔼[Y ∣ X = x]) p(x)

𝔼[Y ] = 𝔼 (𝔼[Y ∣ X]) ∎

def. marginal distribution

def. E[Y]

rearrange sums

Chain rule

def. E[Y | X = x]

def. expected value of function



Expected Value is a Lossy Summary

1 2 3 4 51 2 3 4 5

𝔼[X] = 3 𝔼[X] = 3

𝔼[X2] ≃ 10 𝔼[X2] ≃ 12

X X

P(
X

)

P(
X

)



Variance

 

i.e.,  where . 

Equivalently, 

  

 (why?)

Definition: The variance of a random variable is 

.Var(X) = 𝔼 [(X − 𝔼[X])2]

𝔼[ f(X)] f(x) = (x − 𝔼[X])2

Var(X) = 𝔼 [X2] − (𝔼[X])2



Covariance

 

 
Question: What is the range of ?

Definition: The covariance of two random variables is 

 
Cov(X, Y) = 𝔼 [(X − 𝔼[X])(Y − 𝔼[Y])]

= 𝔼[XY] − 𝔼[X]𝔼[Y] .

Cov(X, Y)



Correlation

 

 
Question: What is the range of ? 
hint: 

Definition: The correlation of two random variables is 

 Corr(X, Y) =
Cov(X, Y)
Var(X)Var(Y)

Corr(X, Y)
Var(X) = Cov(X, X)



Independence and Decorrelation
• Independent RVs have zero correlation (why?) 

        hint:  

• Uncorrelated RVs (i.e., ) might be dependent  
(i.e., ). 
• Correlation (Pearson's correlation coefficient) shows linear relationships; but can 

miss nonlinear relationships 
• Example: ,  

•  
•  
• So 

Cov[X, Y] = 𝔼[XY] − 𝔼[X]𝔼[Y]

Cov(X, Y) = 0
p(x, y) ≠ p(x)p(y)

X ∼ Uniform{−2, − 1,0,1,2} Y = X2

𝔼[XY] = .2(−2 × 4) + .2(2 × 4) + .2(−1 × 1) + .2(1 × 1) + .2(0 × 0)
𝔼[X] = 0

𝔼[XY] − 𝔼[X]𝔼[Y] = 0 − 0𝔼[Y] = 0



Properties of Variances

•  for constant  

•  for constant  

•  

• For independent ,  
 (why?)

Var[c] = 0 c

Var[cX] = c2Var[X] c

Var[X + Y] = Var[X] + Var[Y] + 2Cov[X, Y]

X, Y
Var[X + Y] = Var[X] + Var[Y]



Estimation



Estimators

Example: Estimating  for r.v. .𝔼[X] X ∈ ℝ
Questions: 

Suppose we can observe a different variable .  Is  a 
good estimator of  in the following cases?  Why or 
why not? 

1.  

2.  

3.  

4.  

5. How would you estimate ?

Y Y
𝔼[X]

Y ∼ Uniform[0,10]

Y = 𝔼[X] + Z,  where Z ∼ Uniform[0,1]

Y = 𝔼[X] + Z,  where Z ∼ N(0,1002)

Y = X

𝔼[X]

Definition: An estimator is a procedure for estimating an unobserved quantity based on data.

random

variable!



Bias

 

• Bias can be positive or negative or zero 

• When , we say that the estimator  is unbiased

Definition: The bias of an estimator  is its expected 
difference from the true value of the estimated quantity : 

X̂
X

Bias(X̂) = 𝔼[X̂ − X]

Bias(X̂) = 0 X̂

Questions: 

What is the bias of the 
following estimators of 

? 

1.  

2. , 
where 

 

3. , 
where  

4.

𝔼[X]

Y ∼ Uniform[0,10]

Y = 𝔼[X] + Z

Z ∼ Uniform[0,1]

Y = 𝔼[X] + Z
Z ∼ N(0,1002)

Y = X



Independent and Identically 
Distributed (i.i.d.) Samples

• We usually won't try to estimate anything about a distribution based on only a single sample 
• Usually, we use multiple samples from the same distribution 

• Multiple samples: This gives us more information  
• Same distribution: We want to learn about a single population 

• One additional condition: the samples must be independent (why?) 

Definition: When a set of random variables  are all independent, 
and each has the same distribution , we say they are i.i.d. (independent 
and identically distributed), written  

.

X1, X2, …
X ∼ F

X1, X2, … i.i.d.∼ F



Estimating Expected Value  
via the Sample Mean

Example: We have  i.i.d. samples from the same distribution , 

, 

with  and  for each .   

We want to estimate . 

Let's use the sample mean  to estimate . 

Question: Is this estimator unbiased? 
Question: Are more samples better?  Why?

n F

X1, X2, …, Xn
i.i.d∼ F

𝔼[Xi] = μ Var(Xi) = σ2 Xi

μ

X̄ =
1
n

n

∑
i=1

Xi μ



Estimating Expected Value  
via the Sample Mean

Example: We have  i.i.d. samples from the same distribution , 

, 

with  and  for each .   

We want to estimate . 

Let's use the sample mean  to estimate . 

Question: Is this estimator unbiased? 
Question: Are more samples better?  Why?

n F

X1, X2, …, Xn
i.i.d∼ F

𝔼[Xi] = μ Var(Xi) = σ2 Xi

μ

X̄ =
1
n

n

∑
i=1

Xi μ

 

 

 

    

𝔼[X̄] = 𝔼 [ 1
n

n

∑
i=1

Xi]
=

1
n

n

∑
i=1

𝔼[Xi]

=
1
n

n

∑
i=1

μ

=
1
n

nμ

= μ . ∎



Variance of the Estimator
• Intuitively, more samples should make the estimator 

"closer" to the estimated quantity 

• We can formalize this intuition partly by characterizing 
the variance  of the estimator itself. 

• The variance of the estimator should decrease as 
the number of samples increases 

• Example:  for estimating : 
• The variance of the estimator shrinks linearly as 

the number of samples grows.

Var[X̂]

X̄ μ



Variance of the Estimator
• Intuitively, more samples should make the estimator 

"closer" to the estimated quantity 

• We can formalize this intuition partly by characterizing 
the variance  of the estimator itself. 

• The variance of the estimator should decrease as 
the number of samples increases 

• Example:  for estimating : 
• The variance of the estimator shrinks linearly as 

the number of samples grows.

Var[X̂]

X̄ μ

 

 

 

 

  .

Var[X̄] = Var [ 1
n

n

∑
i=1

Xi]
=

1
n2

Var [
n

∑
i=1

Xi]
=

1
n2

n

∑
i=1

Var[Xi]

=
1
n2

n

∑
i=1

σ2

=
1
n2

nσ2 =
1
n

σ2



Concentration Inequalities
• We want to obtain a confidence interval around our estimate - we want the difference from 

the expected value to be small, and be consistently small. 

• We would like to be able to claim   for some  

• This tells us that  with a large probability,  

• Confidence level: , width of interval:  

•  for any  that we pick  (why?) 

•  means that with "enough" data we can get close to the expected value. 

• Suppose we have  samples, and we know ; so . 

• Question: What is ?

Pr ( X̄ − μ < ϵ) > 1 − δ δ, ϵ > 0

𝔼[X̄] ∈ {X̄ − ϵ, X̄ + ϵ} 1 − δ

δ ϵ

Pr ( X̄ − μ < ϵ) > 1 − δ δ, ϵ > 0

Var[X̄] =
1
n

σ2

n = 10 σ2 = 81 Var[X̄] = 8.1

Pr ( X̄ − μ < 2)



Variance Is Not Enough
Knowing  is not enough to compute ! 

Examples: 

 

 

Var[X̄] = 8.1 Pr( | X̄ − μ | < 2)

p(x̄) = {0.9 if x̄ = μ
0.05 if x̄ = μ ± 9

⟹ Var[X̄] = 8.1 and  Pr( | X̄ − μ | < 2) = 0.9

p(x̄) = {0.999 if x̄ = μ
0.0005 if x̄ = μ ± 90

⟹ Var[X̄] = 8.1 and  Pr( | X̄ − μ | < 2) = 0.999

p(x̄) = {0.1 if x̄ = μ
0.45 if x̄ = μ ± 3

⟹ Var[X̄] = 8.1 and  Pr( | X̄ − μ | < 2) = 0.1



Hoeffding's Inequality
Theorem: Hoeffding's Inequality 

Suppose that  are distributed i.i.d, with . 
Then for any  , 

. 

Equivalently, .

X1, …, Xn a ≤ Xi ≤ b
ϵ > 0

Pr ( X̄ − 𝔼[X̄] ≥ ϵ) ≤ 2 exp (−
2nϵ2

(b − a)2 )
Pr ( X̄ − 𝔼[X̄] ≤ (b − a)

ln(2/δ)
2n ) ≥ 1 − δ



Chebyshev's Inequality
Theorem: Chebyshev's Inequality 

Suppose that  are distributed i.i.d. with variance .  
Then for any , 

. 

Equivalently, .

X1, …, Xn σ2

ϵ > 0

Pr ( X̄ − 𝔼[X̄] ≥ ϵ) ≤
σ2

nϵ2

Pr X̄ − 𝔼[X̄] ≤
σ2

δn
≥ 1 − δ



When to Use Chebyshev, 
When to Use Hoeffding?

• If , then  

• Hoeffding's inequality gives ; 

Chebyshev's inequality gives  

• Hoeffding's inequality gives a tighter bound*, but it can only be used on bounded random 
variables 

✴
whenever  

• Chebyshev's inequality can be applied even for unbounded variables

a ≤ Xi ≤ b Var[Xi] ≤
1
4

(b − a)2

ϵ = (b − a)
ln(2/δ)

2n
=

ln(2/δ)
2

(b − a)
1
n

ϵ =
σ2

δn
≤

(b − a)2

4δn
=

1

2 δ
(b − a)

1
n

ln(2/δ)
2

<
1

2 δ
⟺ δ < ∼ 0.232



Consistency

 

Definition: A sequence of random variables  converges in probability 
to a random variable  (written ) if for all , 

.

Xn
X Xn

p
→ X ϵ > 0

lim
n→∞

Pr( |Xn − X | > ϵ) = 0

Definition: An estimator  for a quantity  is consistent if .X̂ X X̂
p

→ X



Weak Law of Large Numbers

 

Theorem: Weak Law of Large Numbers 

Let  be distributed i.i.d. with 
 and .  

Then the sample mean 

  

is a consistent estimator for .

X1, …, Xn
𝔼[Xi] = μ Var[Xi] = σ2

X̄ =
1
n

n

∑
i=1

Xi

μ

Proof: 

1. We have already shown that  
2. By Chebyshev, 

 

for arbitrary  

3. Hence  

for any  

4. Hence .  

𝔼[X̄] = μ

Pr ( X̄ − 𝔼[X̄] ≥ ϵ) ≤
σ2

nϵ2

ϵ > 0

lim
n→∞

Pr ( X̄ − μ ≥ ϵ) = 0

ϵ > 0
X̄

p
→ μ ∎



Summary

• The variance  of a random variable  is its expected squared 
distance from the mean 

• An estimator is a random variable representing a procedure for estimating 
the value of an unobserved quantity based on observed data 

• Concentration inequalities let us bound the probability of a given 
estimator being at least  from the estimated quantity 

• An estimator is consistent if it converges in probability to the estimated 
quantity

Var[X] X

ϵ


