Estimation: Sample Averages, Bias, and Concentration Inequalities

CMPUT 267: Basics of Machine Learning Winter 2024 Jan 18 2024

Logistics

- Assignment 1a has been released
- due Friday, January 26

- Recap 1.
- 2. Variance and Correlation
- 3. Estimators
- 4. Concentration Inequalities
- 5. Consistency

Outline

Hecap

Random variables are functions from sample to some value \bullet

- Upshot: A random variable takes different values with some probability
- The value of one variable can be informative about the value of another (because they are both functions of the same sample)
 - Distributions of multiple random variables are described by the **joint** probability distribution (joint PMF or joint PDF)
 - **Conditioning** on a random variable gives a new distribution over others
 - **Bayes' Rule**

 $p(y \mid x) = \frac{p(x \mid y)p(y)}{p(x)}$

Independence of Random Variables

Definition: X and Y are independent if: p(x, y) = p(x)p(y)

X and Y are conditionally independent given Z if:

 $p(x, y \mid z) = p(x \mid z)p(y \mid z)$

Example: Coins

- Let Z be the bias of the coin, with $\mathscr{Z} = \{0.3, 0.5, 0.8\}$ and probabilities P(Z = 0.3) = 0.7, P(Z = 0.5) = 0.2 and P(Z = 0.8) = 0.1.

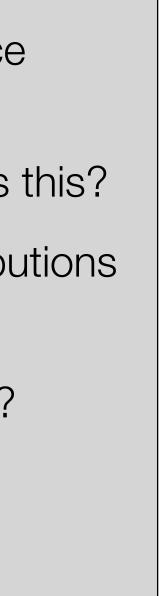
• Let X and Y be two consecutive flips of the coin

(Ex 9 in the course text)

 Suppose you have a biased coin: the probability that it comes up heads is not 0.5. Instead, there is a bias - there is a probability to *more* likely to come up heads.

Questions:

- What other outcome space could we consider?
- What kind of distribution is this?
- What other kinds of distributions could we consider?
- Are X and Y independent?
- Are X and Y conditionally independent given Z?



Example: Coins (2)

- Now imagine I told you Z = 0.3 (i.e., probability of heads is 0.3)
- Let X and Y be two consecutive flips of the coin
- What is P(X = Heads | Z = 0.3)? What about P(X = Tails | Z = 0.3)?
- What is P(Y = Heads | Z = 0.3)? What about P(Y = Tails | Z = 0.3)?
- | s P(X = x, Y = y | Z = 0.3) = P(X = x | Z = 0.3)P(Y = y | Z = 0.3)?

Example: Coins (3)

- Now imagine we do not know Z
 - e.g., you randomly grabbed it from a bin of coins with probabilities
- What is P(X = Heads)?
- $P(X = h) = \sum P(X = h)$ $z \in \{0.3, 0.5, 0.8\}$ = P(X = h | Z = 0.3)p(Z = 0.3)+P(X = h | Z = 0.5)p(Z = 0.5)+P(X = h | Z = 0.8)p(Z = 0.8) $= 0.3 \times 0.7 + 0.5 \times 0.2 + 0.8 \times 0.1 = 0.39$

P(Z = 0.3) = 0.7, P(Z = 0.5) = 0.2 and P(Z = 0.8) = 0.1

$$|Z = z)p(Z = z)$$

Example: Coins (4)

- Now imagine we do not know Z
 - e.g., you randomly grabbed it from a bin of coins with probabilities
- |s P(X = Heads, Y = Heads) = P(X = Heads)p(Y = Heads)?

$$P(X = h, Y = h) = \sum_{z \in \{0.3, 0.5, 0.8\}} P(x)$$
$$= \sum_{z \in \{0.3, 0.5, 0.8\}} P(x)$$

P(Z = 0.3) = 0.7, P(Z = 0.5) = 0.2 and P(Z = 0.8) = 0.1

Y(X = h, Y = h | Z = z)p(Z = z)

(X = h | Z = z)P(Y = h | Z = z)p(Z = z)

Example: Coins (4)

- Let Z be the bias of the coin, with $\mathscr{Z} = \{0.3, 0.5, 0.8\}$ and probabilities P(Z = 0.3) = 0.7, P(Z = 0.5) = 0.2 and P(Z = 0.8) = 0.1.
- Let X and Y be two consecutive flips of the coin
- Question: Are X and Y conditionally independent given Z?
 - i.e., P(X = x, Y = y | Z = z) = P(X = x | Z = z)P(Y = y | Z = z)
- Question: Are X and Y independent?
 - i.e. P(X = x, Y = y) = P(X = x)P(Y = y)

The Distribution Changes Based on What We Know

- The coin has some true bias z
- If we **know** that bias, we reason about P(X = x | Z = z)
 - Namely, the probability of x **given** we know the bias is z
- If we **do not know** that bias, then **from our perspective** the coin outcomes follows probabilities P(X = x)
 - The world still flips the coin with bias z
- Conditional independence is a property of the distribution we are reasoning about, not an objective truth about outcomes

Why is independence and conditional independence important?

- use X as a feature to predict Y?
- \bullet average. If you could measure Z = Smokes, then X and Y would be conditionally independent given Z.
 - correlations
- We will see the utility of conditional independence for learning models

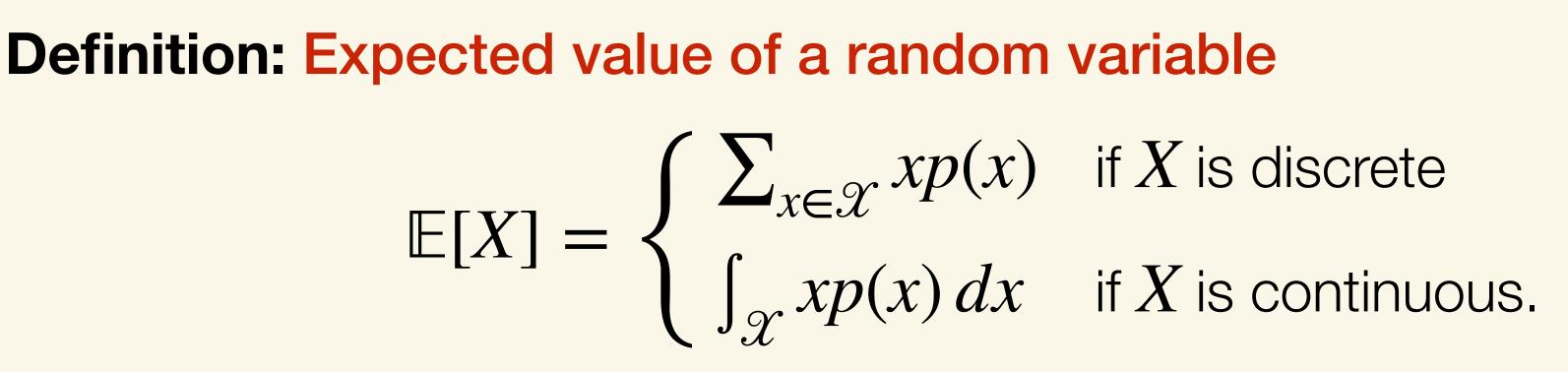
• If I told you X = roof type was **independent** of Y = house price, would you

Imagine you want to predict Y = Has Lung Cancer and you have an indirect correlation with X = Location since in Location 1 more people smoke on

• Suggests you could look for such causal variables, that explain these

Expected Value

variable over its domain.



The expected value of a random variable is the weighted average of that

Relationship to Population Average and Sample Average

- Or Population Mean and Sample Mean \bullet
- Population Mean = Expected Value, Sample Mean estimates this number • e.g., Population Mean = average height of the entire population
- For RV X = height, p(x) gives the probability that a randomly selected person has height x
- Sample average: you randomly sample n heights from the population • implicitly you are sampling heights proportionally to p
- As n gets bigger, the sample average approaches the true expected value

Connection to Sample Average

- Imagine we have a biased coin, p(x = 1) = 0.75, p(x = 0) = 0.25
- Imagine we flip this coin 1000 times, and see (x = 1) 700 times
- The sample average is $\frac{1}{1000} \sum_{i=1}^{1000} x_i = \frac{1}{1000} \left[\sum_{i:x_i=0}^{1} x_i + \sum_{i:x_i=1}^{1} x_i \right]$
- The true expected value is $\sum_{x \in \{0,1\}} p(x)x = 0 \times p(x = 0) +$

$$= 0 \times \frac{300}{1000} + 1 \times \frac{700}{1000} = = 0 \times 0.3 + 1 \times 0.7 = 0.7$$

 $\sum p(x)x = 0 \times p(x = 0) + 1p(x = 1) = 0 \times 0.25 + 1 \times 0.75 = 0.75$

Expected Value with Functions

The expected value of a function $f: \mathcal{X} \to \mathbb{R}$ of a random variable is the weighted average of that function's value over the domain of the variable.

Definition: Expected value of a function of a random variable $\mathbb{E}[f(X)] = \begin{cases} \sum_{x \in \mathcal{X}} f(x)p(x) & \text{if } X \text{ is discrete} \\ \int_{\mathcal{X}} f(x)p(x) \, dx & \text{if } X \text{ is continuous.} \end{cases}$

Example:

Suppose you get \$10 if heads is flipped, or lose \$3 if tails is flipped. What are your winnings **on expectation**?

Expected Value Example

Example:

Suppose you get \$10 if heads is flipped, or lose \$3 if tails is flipped. What are your winnings **on expectation**?

X is the outcome of the coin flip, 1 for heads and 0 for tails

$$f(x) = \begin{cases} 3 & \text{if } x = 0\\ 10 & \text{if } x = 1 \end{cases}$$

Y = f(X) is a new random variable $\mathbb{E}[Y] = \mathbb{E}[f(X)] = \sum_{x \in \mathcal{X}} f(x)p(x) = f(X)$

 $\mathbb{E}[Y] = \mathbb{E}[f(X)] = \sum f(x)p(x) = f(0)p(0) + f(1)p(1) = .5 \times 3 + .5 \times 10 = 6.5$

One More Example

Suppose X is the outcome of a dice role $f(x) = \begin{cases} -1 & \text{if } x \le 3\\ 1 & \text{if } x \ge 4 \end{cases}$

We see Y = 1 each time we observe 4, 5, or 6. $\mathbb{E}[Y] = \mathbb{E}[f(X)] = \sum f(y) n(y)$

$$E[Y] = \mathbb{E}[f(X)] = \sum_{x \in \mathcal{X}} f(x)p(x)$$

$$= (-1) \Big(p(X = 1) + p(X = 2) + p(X = 3) \Big)$$

+ $(1) \Big(p(X = 4) + p(X = 5) + p(X = 6) \Big)$

Y = f(X) is a new random variable. We see Y = -1 each time we observe 1, 2 or 3.

One More Example

Suppose X is the outcome of a dice role

$$f(x) = \begin{cases} -1 & \text{if } x \le 3\\ 1 & \text{if } x \ge 4 \end{cases}$$

Y = f(X) is a new random variable. We see Y = -1 each time we observe 1, 2 or 3. We see Y = 1 each time we observe 4, 5, or 6.

$$= (-1) \Big(p(X = 1) + p(X = 2) +$$

Summing over x with p(x) is equivalent, and simpler (no need to infer p(y))

 $\mathbb{E}[Y] = \mathbb{E}[f(X)] = \sum f(x)p(x) = \sum yp(y) \quad p(Y = -1) = p(X = 1) + p(X = 2) + p(X = 3) = 0.5$ $x \in \mathcal{X}$ $y \in \{-1,1\}$ p(Y = 1) = p(X = 4) + p(X = 5) + p(X = 6) = 0.5 $(X=3)\Big)$ $\nu(X=6)\Big) = -1(0.5) + 1(0.5)$



Definition: The expected value of Y conditional on X = x is $\mathbb{E}[Y \mid X = x] = \begin{cases} \sum_{y \in \mathscr{Y}} yp(y \mid x) & \text{if } Y \text{ is discrete,} \\ \int_{\mathscr{Y}} yp(y \mid x) \, dy & \text{if } Y \text{ is continuous.} \end{cases}$

Question: What is $\mathbb{E}[Y \mid X]$?

Conditional Expectations

Definition: The expected value of Y conditional on X = x is $\mathbb{E}[Y \mid X = x] = \begin{cases} \sum_{y \in \mathscr{Y}} yp(y \mid x) & \text{if } Y \text{ is discrete,} \\ \int_{\mathscr{Y}} yp(y \mid x) \, dy & \text{if } Y \text{ is continuous.} \end{cases}$

Question: What is $\mathbb{E}[Y \mid X]$?

Question: What is $\mathbb{E}[\mathbb{E}[Y \mid X]]$?

Conditional Expectations

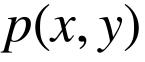
Answer: $Z = \mathbb{E}[Y \mid X]$ is a random variable, $z = \mathbb{E}[Y \mid X = x]$ is an outcome

Properties of Expectations

- Linearity of expectation: \bullet
 - $\mathbb{E}[cX] = c\mathbb{E}[X]$ for all constant c
 - $\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y]$
- Products of expectations of independent random variables X, Y:
 - $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$
- Law of Total Expectation:
 - $\mathbb{E}\left[\mathbb{E}\left[Y \mid X\right]\right] = \mathbb{E}[Y]$
- **Question:** How would you prove these?

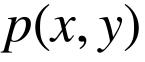
Linearity of Expectation

 $\sum \sum p(x, y)x = \sum \sum p(x, y)x$ $\mathbb{E}[X+Y] = \sum p(x,y)(x+y)$ $y \in \mathcal{Y} \ x \in \mathcal{X} \qquad x \in \mathcal{X} \ y \in \mathcal{Y}$ $(x,y) \in \mathcal{X} \times \mathcal{Y}$ $= \sum x \sum p(x, y) \quad \triangleright p(x) = \sum p(x, y)$ $= \sum \sum p(x, y)(x + y)$ $x \in \mathcal{X} \quad y \in \mathcal{Y}$ $y \in \mathcal{Y}$ $y \in \mathcal{Y} x \in \mathcal{X}$ $=\sum xp(x)$ $= \sum p(x, y)x + \sum p(x, y)y$ $x \in \mathcal{X}$ $= \mathbb{E}[X]$ $v \in \mathcal{Y} \ x \in \mathcal{X} \qquad \qquad v \in \mathcal{Y} \ x \in \mathcal{X}$



Linearity of Expectation

 $\sum \sum p(x, y)x = \sum \sum p(x, y)x$ $\mathbb{E}[X+Y] = \sum p(x,y)(x+y)$ $y \in \mathcal{Y} \ x \in \mathcal{X} \qquad x \in \mathcal{X} \ y \in \mathcal{Y}$ $(x,y) \in \mathcal{X} \times \mathcal{Y}$ $= \sum x \sum p(x, y) \quad \triangleright p(x) = \sum p(x, y)$ $= \sum \sum p(x, y)(x + y)$ $x \in \mathcal{X} \quad y \in \mathcal{Y}$ $y \in \mathcal{Y}$ $y \in \mathcal{Y} x \in \mathcal{X}$ $=\sum xp(x)$ $= \sum p(x, y)x + \sum p(x, y)y$ $x \in \mathcal{X}$ $= \mathbb{E}[X]$ $y \in \mathcal{Y} \ x \in \mathcal{X} \qquad \qquad y \in \mathcal{Y} \ x \in \mathcal{X}$ $= \mathbb{E}[X] + \mathbb{E}[Y]$



What if the RVs are continuous?

E $\mathbb{E}[X+Y] = \sum p(x,y)(x+y)$ $(x,y) \in \mathcal{X} \times \mathcal{Y}$ $= \sum \sum p(x, y)(x + y)$ $y \in \mathcal{Y} x \in \mathcal{X}$ $= \sum \sum p(x, y)x + \sum \sum p(x, y)y$ $y \in \mathcal{Y} \ x \in \mathcal{X} \qquad \qquad y \in \mathcal{Y} \ x \in \mathcal{X}$ $= \mathbb{E}[X] + \mathbb{E}[Y]$

$$\begin{split} [X+Y] &= \int_{\mathcal{X}\times\mathcal{Y}} p(x,y)(x+y)d(x,y) \\ &= \int_{\mathcal{Y}} \int_{\mathcal{X}} p(x,y)(x+y)dxdy \\ &= \int_{\mathcal{Y}} \int_{\mathcal{X}} p(x,y)xdxdy + \int_{\mathcal{Y}} \int_{\mathcal{X}} p(x,y)ydxdy \\ &= \int_{\mathcal{X}} x \int_{\mathcal{Y}} p(x,y)dydx + \int_{\mathcal{Y}} y \int_{\mathcal{X}} p(x,y)dxdy \\ &= \int_{\mathcal{X}} x p(x)dx + \int_{\mathcal{Y}} y p(y)dy \\ &= \mathbb{E}[X] + \mathbb{E}[Y] \end{split}$$



Properties of Expectations

- Linearity of expectation: \bullet
 - $\mathbb{E}[cX] = c\mathbb{E}[X]$ for all constant c
 - $\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y]$
- Products of expectations of independent random variables X, Y:
 - $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$
- Law of Total Expectation:
 - $\mathbb{E}\left[\mathbb{E}\left[Y \mid X\right]\right] = \mathbb{E}[Y]$
- **Question:** How would you prove these?

$$\mathbb{E}[Y] = \sum_{y \in \mathscr{Y}} yp(y) \qquad \text{def. marginal distr}$$

$$= \sum_{y \in \mathscr{Y}} y\sum_{x \in \mathscr{X}} p(x, y) \qquad \text{def. marginal distr}$$

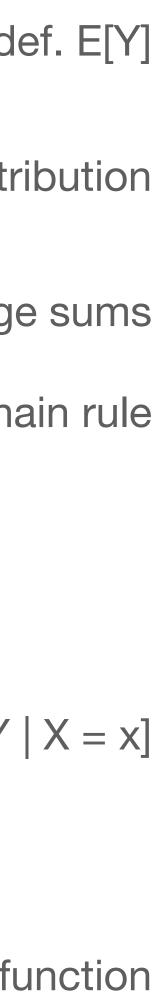
$$= \sum_{x \in \mathscr{X}} \sum_{y \in \mathscr{Y}} yp(x, y) \qquad \text{rearrange}$$

$$= \sum_{x \in \mathscr{X}} \sum_{y \in \mathscr{Y}} yp(y \mid x)p(x) \qquad \text{Cha}$$

$$= \sum_{x \in \mathscr{X}} \left(\sum_{y \in \mathscr{Y}} yp(y \mid x) \right) p(x) \qquad \text{def. E[Y]}$$

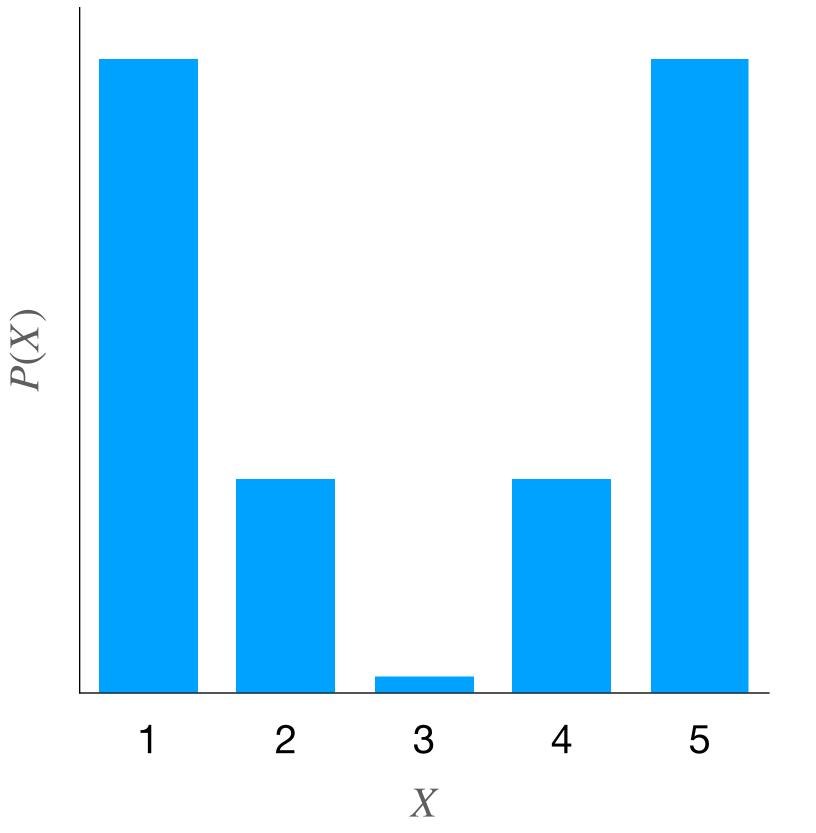
$$= \sum_{x \in \mathscr{X}} \left(\mathbb{E}[Y \mid X = x] \right) p(x) \qquad \text{def. E[Y]}$$

$$= \mathbb{E} \left(\mathbb{E}[Y \mid X] \right) \blacksquare \qquad \text{def. expected value of full}$$



 $\mathbb{E}[X] = 3$ $\mathbb{E}[X^2] \simeq 10$

Expected Value is a Lossy Summary



 $\mathbb{E}[X] = 3$ $\mathbb{E}[X^2] \simeq 12$

Variance

Definition: The **variance** of a random variable is

i.e., $\mathbb{E}[f(X)]$ where $f(x) = (x - \mathbb{E}[X])^2$. Equivalently,

 $Var(X) = \mathbb{E} \left[X^2 \right] - \left(\mathbb{E}[X] \right)^2$

(**why?**)

 $\operatorname{Var}(X) = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right].$

Covariance

Definition: The **covariance** of two random variables is



Large Negative Covariance

Question: What is the range of Cov(X, Y)?

- $Cov(X, Y) = \mathbb{E}\left[(X \mathbb{E}[X])(Y \mathbb{E}[Y])\right]$ $= \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y].$

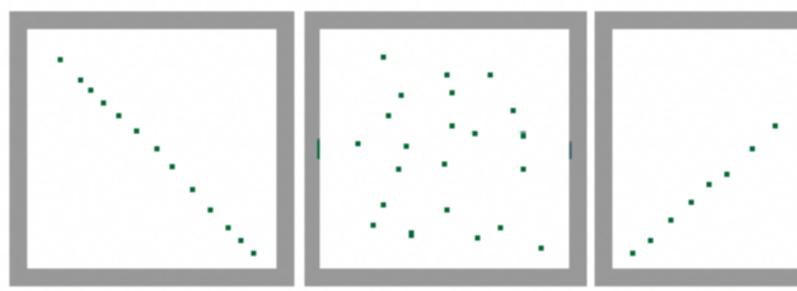
Near Zero Covariance

Large Positive

Covariance

Correlation

Definition: The **correlation** of two random variables is



Large Negative Covariance

Question: What is the range of Corr(X, Y)? hint: Var(X) = Cov(X, X)

 $Corr(X, Y) = \frac{Cov(X, Y)}{\sqrt{Var(X)Var(Y)}}$

Near Zero Covariance

Large Positive Covariance

- Independent RVs have zero correlation (**why?**) \bullet hint: $Cov[X, Y] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$
- Uncorrelated RVs (i.e., Cov(X, Y) = 0) might be dependent (i.e., $p(x, y) \neq p(x)p(y)$).
 - Correlation (Pearson's correlation coefficient) shows linear relationships; but can miss nonlinear relationships
 - **Example:** $X \sim \text{Uniform}\{-2, -1, 0, 1, 2\}, Y = X^2$

 - $\mathbb{E}[X] = 0$
 - So $\mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y] = 0 0\mathbb{E}[Y] = 0$

Independence and Decorrelation

• $\mathbb{E}[XY] = .2(-2 \times 4) + .2(2 \times 4) + .2(-1 \times 1) + .2(1 \times 1) + .2(0 \times 0)$

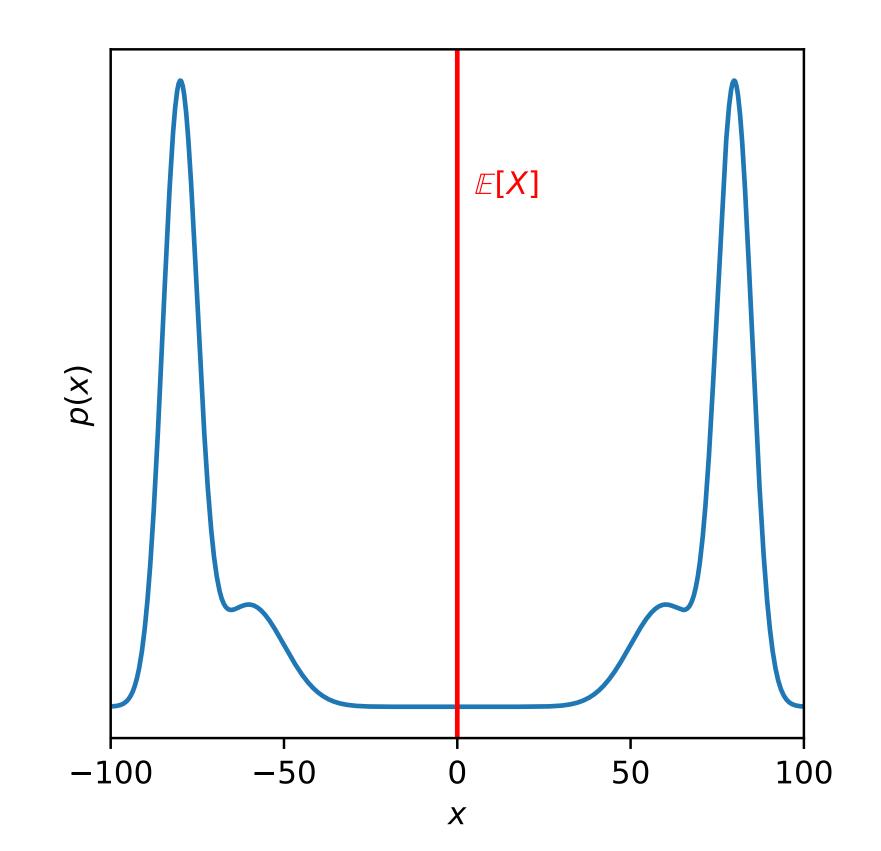
- Var[c] = 0 for constant c
- $Var[cX] = c^2 Var[X]$ for constant c
- Var[X + Y] = Var[X] + Var[Y] + 2Cov[X, Y]
- For independent X, Y, Var[X + Y] = Var[X] + Var[Y] (why?)

Properties of Variances

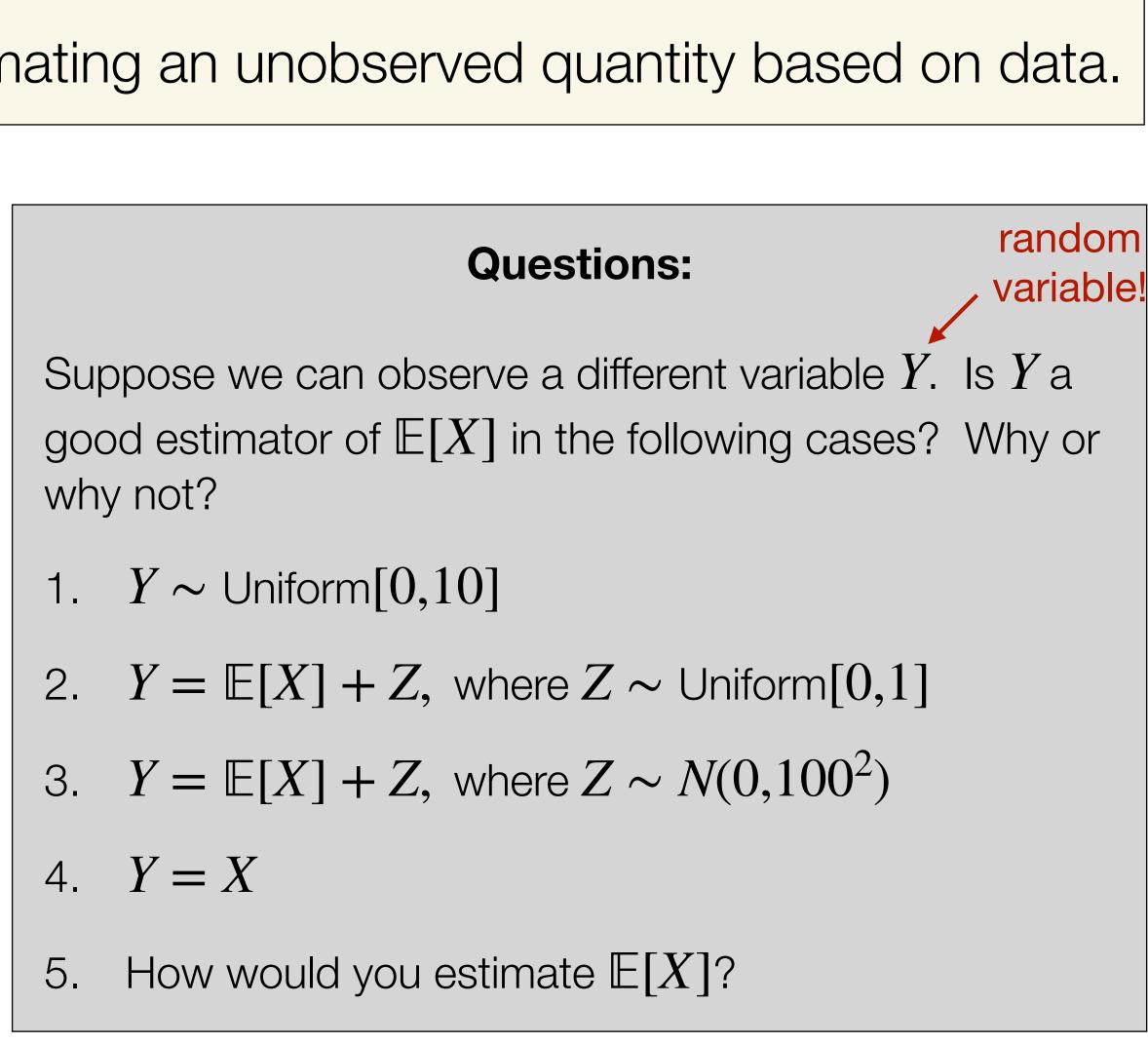
Estimation

Estimators

Example: Estimating $\mathbb{E}[X]$ for r.v. $X \in \mathbb{R}$.



Definition: An estimator is a procedure for estimating an unobserved quantity based on data.



Bias

Definition: The **bias** of an estimator X is its expected difference from the true value of the estimated quantity X: $\operatorname{Bias}(\hat{X}) = \mathbb{E}[\hat{X} - X]$

- Bias can be positive or negative or zero \bullet
- When $Bias(\hat{X}) = 0$, we say that the estimator \hat{X} is **unbiased**

Questions:

What is the **bias** of the following estimators of $\mathbb{E}[X]?$

- 1. $Y \sim \text{Uniform}[0, 10]$
- 2. $Y = \mathbb{E}[X] + Z,$ where $Z \sim \text{Uniform}[0,1]$
- 3. $Y = \mathbb{E}[X] + Z,$ where $Z \sim N(0, 100^2)$

$$4. \quad Y = X$$

Independent and Identically Distributed (i.i.d.) Samples

- We usually won't try to estimate anything about a distribution based on only a single sample
- Usually, we use **multiple samples** from the **same distribution**
 - *Multiple samples:* This gives us more information
 - Same distribution: We want to learn about a single population
- One additional condition: the samples must be **independent** (**why?**)

and identically distributed), written

Definition: When a set of random variables X_1, X_2, \ldots are all independent, and each has the same distribution $X \sim F$, we say they are i.i.d. (independent)

$$X_1, X_2, \ldots \stackrel{i.i.d.}{\sim} F.$$

Estimating Expected Value via the Sample Mean

Example: We have n i.i.d. samples from the same distribution F,

 $X_1, X_2, \ldots, X_n \stackrel{i.i.d}{\sim} F$,

with $\mathbb{E}[X_i] = \mu$ and $\operatorname{Var}(X_i) = \sigma^2$ for each X_i .

We want to estimate μ .

Let's use the sample mean $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ to estimate μ .

Question: Is this estimator **unbiased**? **Question:** Are more samples better? Why?

Estimating Expected Value via the Sample Mean

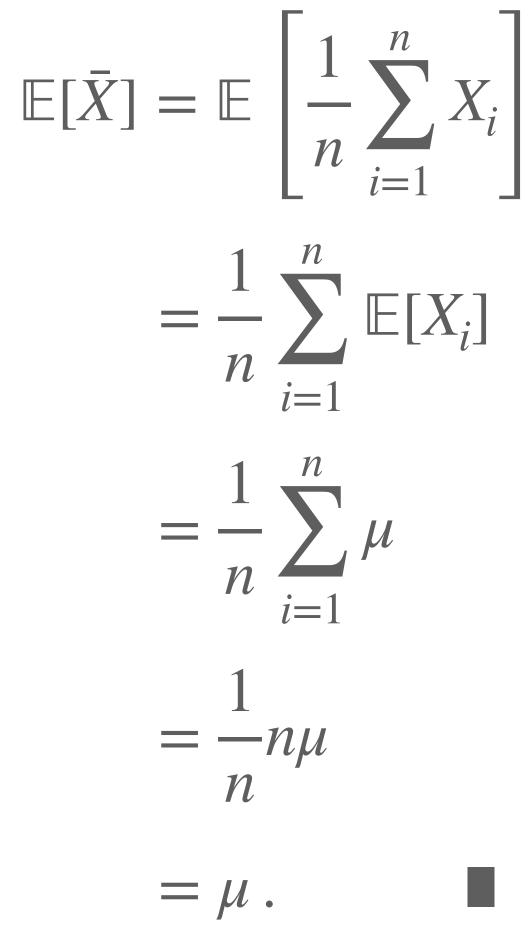
Example: We have n i.i.d. samples from the same distribution F, $X_1, X_2, \ldots, X_n \stackrel{i.i.d}{\sim} F,$

with $\mathbb{E}[X_i] = \mu$ and $\operatorname{Var}(X_i) = \sigma^2$ for each X_i .

We want to estimate μ .

Let's use the sample mean $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ to estimate μ .

Question: Is this estimator **unbiased**? **Question:** Are more samples better? Why?

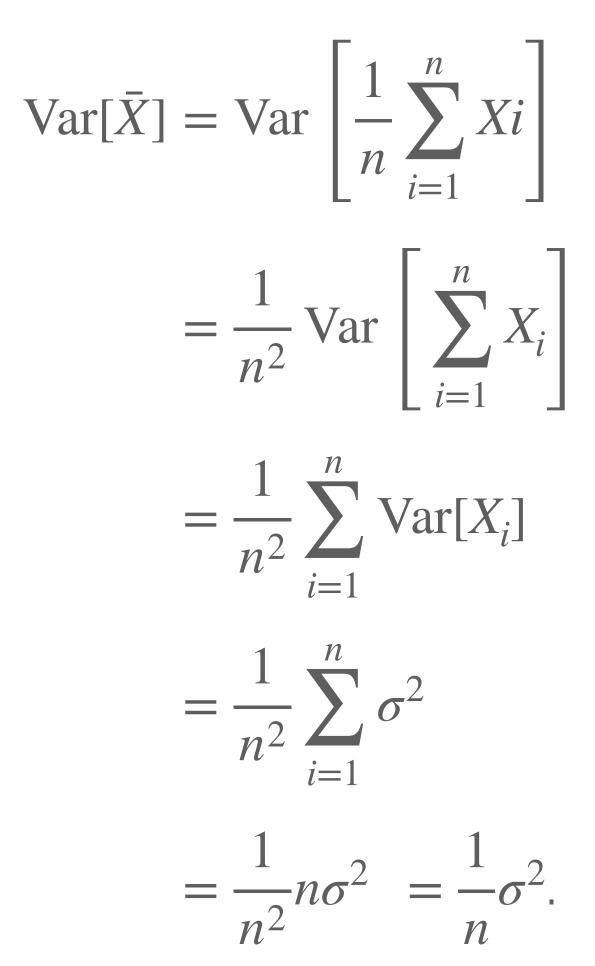


Variance of the Estimator

- Intuitively, more samples should make the estimator \bullet "closer" to the estimated quantity
- We can formalize this intuition partly by characterizing the variance $Var[\hat{X}]$ of the estimator itself.
 - The variance of the estimator should decrease as the number of samples increases
- **Example:** X for estimating μ :
 - The variance of the estimator shrinks linearly as the number of samples grows.

Variance of the Estimator

- Intuitively, more samples should make the estimator "closer" to the estimated quantity
- We can formalize this intuition partly by characterizing the variance $Var[\hat{X}]$ of the estimator itself.
 - The variance of the estimator should decrease as the number of samples increases
- **Example:** \overline{X} for estimating μ :
 - The variance of the estimator shrinks linearly as the number of samples grows.



Concentration Inequalities

- the expected value to be small, and be consistently small.
- We would like to be able to claim $\Pr\left(\left|\bar{X}\right|\right)$
- This tells us that $\mathbb{E}[\bar{X}] \in \{\bar{X} \epsilon, \bar{X} + \epsilon\}$ with a large probability, 1δ
- Confidence level: δ , width of interval: ϵ
- $\Pr\left(\left|\bar{X}-\mu\right| < \epsilon\right) > 1 \delta$ for any $\delta, \epsilon > 0$ that we pick (why?)
- $Var[\bar{X}] = \frac{1}{n}\sigma^2$ means that with "enough" data we can get close to the expected value.
- Suppose we have n = 10 samples, and we know $\sigma^2 = 81$; so $Var[\bar{X}] = 8.1$.
- **Question:** What is $\Pr\left(\left|\bar{X} \mu\right| < 2\right)$?

• We want to obtain a confidence interval around our estimate - we want the difference from

$$-\mu | < \epsilon) > 1 - \delta$$
 for some $\delta, \epsilon > 0$

Variance Is Not Enough

Knowing $\operatorname{Var}[\overline{X}] = 8.1$ is **not enough** to compute $\Pr(|\overline{X} - \mu| < 2)!$ **Examples:**

$$p(\bar{x}) = \begin{cases} 0.9 & \text{if } \bar{x} = \mu \\ 0.05 & \text{if } \bar{x} = \mu \pm 9 \end{cases} \Longrightarrow$$

$$p(\bar{x}) = \begin{cases} 0.999 & \text{if } \bar{x} = \mu \\ 0.0005 & \text{if } \bar{x} = \mu \pm 90 \end{cases} \Longrightarrow$$

$$p(\bar{x}) = \begin{cases} 0.1 & \text{if } \bar{x} = \mu \\ 0.45 & \text{if } \bar{x} = \mu \pm 3 \end{cases} \Longrightarrow$$

- $Var[\bar{X}] = 8.1$ and $Pr(|\bar{X} \mu| < 2) = 0.9$
- Var $[\bar{X}] = 8.1$ and Pr $(|\bar{X} \mu| < 2) = 0.999$
- $Var[\bar{X}] = 8.1$ and $Pr(|\bar{X} \mu| < 2) = 0.1$

Hoeffding's Inequality

Theorem: Hoeffding's Inequality Suppose that X_1, \ldots, X_n are distributed i.i.d, with $a \leq X_i \leq b$. Then for any $\epsilon > 0$, $\Pr\left(\left|\bar{X} - \mathbb{E}[\bar{X}]\right| \ge \epsilon\right)$ Equivalently, $\Pr\left(\left|\bar{X} - \mathbb{E}[\bar{X}]\right| \le (k)\right)$

$$b(x) \le 2 \exp\left(-\frac{2n\epsilon^2}{(b-a)^2}\right).$$
$$b(x) = b - a \sqrt{\frac{\ln(2/\delta)}{2n}} \ge 1 - \delta$$

Chebyshev's Inequality

Theorem: Chebyshev's Inequality Suppose that X_1, \ldots, X_n are distributed i.i.d. with variance σ^2 . Then for any $\epsilon > 0$, $\Pr\left(\left|\bar{X}-\mathbb{E}\right|\right)$ Equivalently, $\Pr \left| \bar{X} - \mathbb{E}[\bar{X}] \right| \leq \sqrt{2}$

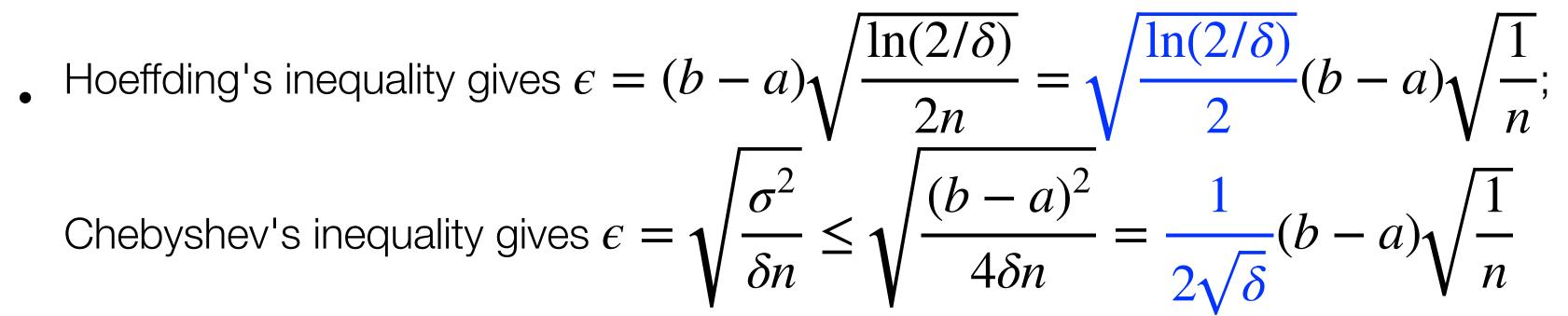
$$\left| \frac{\bar{X}}{\bar{X}} \right| \ge \epsilon \right) \le \frac{\sigma^2}{n\epsilon^2}$$
$$\left| \frac{\sigma^2}{\delta n} \right| \ge 1 - \delta.$$

When to Use Chebyshev, When to Use Hoeffding?

- If $a \le X_i \le b$, then $\operatorname{Var}[X_i] \le \frac{1}{4}(b-a)^2$
- Chebyshev's inequality gives $\epsilon = \sqrt{\frac{\sigma^2}{\delta n}} \le \sqrt{\frac{(b-a)^2}{4\delta n}} = \frac{1}{2\sqrt{\delta}}(b-a)\sqrt{\frac{1}{n}}$
- variables

* whenever
$$\sqrt{\frac{\ln(2/\delta)}{2}} < \frac{1}{2\sqrt{\delta}} \iff$$

• Chebyshev's inequality can be applied even for unbounded variables



Hoeffding's inequality gives a tighter bound*, but it can only be used on bounded random

 $\delta < \sim 0.232$

Consistency

Definition: A sequence of random variables X_n converges in probability to a random variable X (written $X_n \xrightarrow{p} X$) if for all $\epsilon > 0$, lim $Pr(|X_n|)$

Definition: An estimator \hat{X} for a quantity X is **consistent** if $\hat{X} \xrightarrow{p} X$.

 $n \rightarrow \infty$

$$|-X| > \epsilon) = 0.$$

Theorem: Weak Law of Large Numbers

Let X_1, \ldots, X_n be distributed i.i.d. with $\mathbb{E}[X_i] = \mu$ and $\operatorname{Var}[X_i] = \sigma^2$.

Then the **sample mean**

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

is a **consistent estimator** for μ .

Weak Law of Large Numbers

Proof:

1. We have already shown that $\mathbb{E}[X] = \mu$ 2. By Chebyshev, $\Pr\left(\left|\bar{X} - \mathbb{E}[\bar{X}]\right| \ge \epsilon\right) \le \frac{\sigma^2}{nc^2}$ for arbitrary $\epsilon > 0$ 3. Hence $\lim_{n \to \infty} \Pr\left(\left|\bar{X} - \mu\right| \ge \epsilon\right) = 0$ for any $\epsilon > 0$ 4. Hence $\bar{X} \xrightarrow{p} \mu$.

Summary

- The variance Var[X] of a random variable X is its expected squared distance from the mean
- the value of an unobserved quantity based on observed data
- **Concentration inequalities** let us bound the probability of a given estimator being at least ϵ from the estimated quantity
- quantity

• An estimator is a random variable representing a procedure for estimating

• An estimator is **consistent** if it **converges in probability** to the estimated