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Recap

« Random variables are functions from sample to some value
 Upshot: A random variable takes different values with some probability

e [he value of one variable can be informative about the value of another
(oecause they are both functions of the same sample)

* Distributions of multiple random variables are described by the joint
orobability distribution (joint PMF or joint PDF)
 Conditioning on a random variable gives a new distribution over others

Bayes’ Rule
plx | y)p(y)

p(x)

ply | x) =



INndependence of Random Variables

Definition: X and Y are independent if:

px,y) = p)p(y)

X and Y are conditionally independent given Z if:

p,y|z2)=pkx|2ply|2)




Example: Coins

* SUpPpPOSe you have a biased coin: the probability that it comes up heads is not 0.5.
Instead, there is a bias - there is a probability to more likely to come up heads.

 Let Z be the bias of the coin, with £ = {0.3,0.5,0.8} and probabilities

P(Z=03)=0.7,P(Z=05)=02and P(Z=0.8) =0.1.

e Let X and Y be two consecutive flips of the coin

(Ex 9 in the course text)

Questions:

What other outcome space
could we consider?

What kind of distribution is this?

What other kinds of distributions
could we consider?

Are X and Y independent?

Are X and Y conditionally
independent given Z7?




Example: Coins (2)

Now imagine | told you Z = 0.3 (i.e., probability of heads is 0.3)

Let X and Y be two consecutive flips of the coin

What is P(X = Heads |Z = 0.3)? What about P(X = Tails|Z = 0.3)?

What is P(Y = Heads |Z = 0.3)? What about P(Y = Tails|Z = 0.3)?

sPX=x,Y=y|Z=03)=PX=x|Z=03)P(Y=y|Z=0.3)?



Example: Coins (3)

« Now imagine we do not know Z
* e.d., you randomly grabbed it from a bin of coins with probabillities

PZ=03)=0.7,PZ=05)=02and P(Z=0.8)=0.1
e What is P(X = Heads)?

PX=h= )  PX=h|Z=2pZ=72)
z€{0.3,0.5,0.8}
= P(X = h|Z=0.3)p(Z=0.3)
+P(X = h|Z=0.5p(Z=0.5)
+P(X = h|Z = 0.8)p(Z=0.8)
=0.3xX0.74+05%x0.2+0.8x0.1 =0.39



Example: Coins (4)

* Now imagine we do not know Z
* e.g., you randomly grabbed it from a bin of coins with probabillities

PZ=03)=0.7,P(Z=0.5)=0.2and P(Z=0.8) =0.1
e IsP(X = Heads,Y = Heads) = P(X = Heads)p(Y = Heads)?

P(X=hY=h)

) PX=hY=h|Z=2pZ=7)
2€{0.3,0.5,0.8)

) PX=h|Z=2P(Y=h|Z=2pZ=7)
z€{0.3,0.5,0.8}



Example: Coins (4)

et Z be the bias of the coin, with £ = {0.3,0.5,0.8} and probabilities
P(Z=03)=0.7,P(Z=0.5)=0.2and P(Z=0.8) =0.1.

Let X and Y be two consecutive flips of the coin

Question: Are X and Y conditionally independent given Z?

e e, PX=x,Y=y|Z=2)=PX=x|Z=2)P(Y=y|Z=12)
Question: Are X and Y independent?

e | e, P(X:x,Yzy) =P(X=X)P(Y=y)



The Distribution Changes Based on
VWhat We Know

The colin has some true bias z

f we know that bias, we reason about P(X = x|Z = z)
 Namely, the probability of x given we know the bias is z

If we do not know that bias, then from our perspective the coin
outcomes follows probabilities P(X = x)

* [he world still flips the coin with bias z

Conditional independence is a property of the distribution we are reasoning
about, not an objective truth about outcomes




Why IS Independence and
conditional independence important?

e |f|told you X = roof type was independent of Y = house price, would you
use X as a feature to predict Y7

* |magine you want to predict Y = Has Lung Cancer and you have an indirect
correlation with X = Location since in Location 1 more people smoke on
average. If you could measure Z = Smokes, then X and Y would be

conditionally independent given Z.

e Suggests you could look for such causal variables, that explain these
correlations

 We will see the utility of conditional independence for learning models



=Xpected Value

The expected value of a random variable is the weighted average of that
variable over its domain.

Definition: Expected value of a random variable

er o-Xp(x) if X is discrete

—[X] =

f - xp(x)dx if X is continuous.




Relationsnhip to Population Average
and Sample Average

Or Population Mean and Sample Mean

Population Mean = Expected Value, Sample Mean estimates this number

* e.g., Population Mean = average height of the entire population

For RV X = height, p(x) gives the probability that a randomly selected person
has height x

Sample average: you randomly sample n heights from the population
* Implicitly you are sampling heights proportionally to p

As n gets bigger, the sample average approaches the true expected value



Connection to Sample Average

* |magine we have a biased coin, p(x = 1) = 0.75, p(x = 0) = 0.25
* Imagine we flip this coin 1000 times, and see (x = 1) 700 times

 [he sample average IS

1 1000 1
000 24 = Togo | &+ 2

300 700
= () X F1 X ==0X03+1x0.7=0.7
1000 1000

* [he true expected value Is
Y px=0xplx=0)+1p(x=1)=0x025+1x0.75 = 0.75
xe{0,1}



EXpected Value with Functions

The expected value of a function f : & — R of a random variable is the
welighted average of that function's value over the domain of the variable.

Definition: Expected value of a function of a random variable

er o JOOp(x) if X'is discrete
I&p f(x)p(x)dx if Xis continuous.

—[fX)] =

Example:
Suppose you get $10 if heads is flipped, or lose $3 if tails is flipped.
What are your winnings on expectation”




EXpected Value Example

Example:
Suppose you get $10 if heads is flipped, or lose $3 if tails is flipped.

What are your winnings on expectation?

X is the outcome of the coin flip, 1 for heads and O for tails

)3 ifx=0
=143

fx =1

Y = f(X) is a new random variable

(Y] = ELfX0] = ), fp@) = f0)p0) +f(p(1) = 5% 3 +.5% 10 = 6.5

b=t A




One More Example

Suppose X is the outcome of a dice role

—1 ifx <3
Jx) = {1 fx >4

Y = f(X) is a new random variable. We see ¥ = — 1 each time we observe 1, 2 or 3.
We see Y = 1 each time we observe 4, 5, or 6.

(Y] = ELfX)] = ) fp()

b= A

= (-D(pX = D+p(X =2 +pX =3))

+ (D(p(X=4)+pX =5 +p(X =6))



One More Example

Suppose X is the outcome of a dice role

-1 fx<3
Jx) =
| if x > 4
Y = f(X) is a new random variable. We see Y = — 1 each time we observe 1, 2 or 3.

We see Y = 1 each time we observe 4, 5, or 6.

[ Y] = E[f(X)] = Zf(X)P(X) = Z (@) p=-D=pX=D+pX=2)+pX=3)=05
x€XL ye{—1,1} pY=1)=pX=4)+pX=5)+pX=6)=0.5

= (-D(pX = D) +p(X =2 +p(x =3))

+ (1)(p(X — &)+ p(X = 5) + p(X = 6)) — _ 1(0.5) + 1(0.5)

Summing over X with p(x) is equivalent, and simpler (no need to infer p(y))



Conditional Expectations

Definition:
The expected value of ¥ conditional on X = x is

Zyeyyp(y | x) if Yis discrete,

- Y ‘ X =x| =
f? yp(y | x)dy if Yis continuous.

Question: What is E[Y | X]?




Conditional Expectations

Definition:
The expected value of Y conditional on X = x is

Zyeyyp(y | x) if Yis discrete,

[V | X =x] =

I? yp(y | x)dy if Yis continuous.

Question: What is E[Y | X]?
Answer: Z = E[Y | X] is a random variable, z = E[Y | X = x] is an outcome

Question: Whatis E[E[Y | X]] ?




Properties of Expectations

e Linearity of expectation:

« [ElcX] = cE[X] for all constant ¢
» E[X+ Y] =E[X]+E[Y]

* Products of expectations of independent

random variables X, Y:
» E[XY] = E[X]E[Y]

 Law of lotal Expectation:

. E|E[Y|X]| = EY

* Question: How would you prove these?



| Inearity of Expectation

X+Y]= ) pEy)E+y) 2 2 PEyx= 2, ) plny

(X, Y)EX XY YEY x€X xeZ yeY
= ), D Py +) = 2, x ) pwy) Bp= ), plxy)
VEY x€XL Y&t yed VEY
= Z xp(x)
xXeX

= Y peeyx+ Y Y peryy

YEY x€XL YEY XxE€EX —

=[X ]




| Inearity of Expectation

(X + Y] = Z px,y)(x +y) D D pyx= ) Y plyx

(X V)EXLXY YEY x€XL XX ye¥Y
— Z Z p(x, v)(x + V) = Y x ) px.y) >p&x)= ) p@.y)
yEY x€X xel yey YEY
= Z xp(x)
~ Z ZP(X,)/)X—I— Z ZP(X,Y))’ XEX
YEY x€XL YEY x€XL = E[X]

= E[X] + E[Y]




What If the RVs are continuous?

X+YI= Y ploy)C+y) (X + Y] = J px, y)(x + y)d(x, y)
XY EXXY s
= > D pr.y)E+y) = J I p(x, y)(x + y)dxdy
YEY xeX a4
— yezg XEZSZ plx, y)x + yezy XEZ%P(X, y)y — J I p(x, V)xdxdy + J [ p(x, v)ydxdy
= E[X] + E[Y] g o
= J XJ p(x, y)dydx + [ yJ p(x, y)dxdy
T Yy Yy X

J XP(X)dX-FJ yp(V)dy
X /

[ Y]

[
—
>
_|_




Properties of Expectations

Linearity of expectation: E[Y]= ) yp(y) def. E[Y]

ey
[cX] = cElX]for all constant ¢ = Z y Z px,y) def. marginal distribution
« E[X+ Y] =E[X]+ E[Y] y§”§ff
= yp(x, y)

Products of expectations of independent ‘€% yey rearrange sums

random variables X, Y- = ) Yy | p) Chain rule
XEX yeY

» E[XY] = E[X]E[Y]

L aw of Total Expectation: B XZ; [yg;y Py | x)]p ()

. _l‘[Y‘XH = ‘[Y] =Z([E[Y\X=x])p(x) def. E[Y | X = X]
xed

Question: How would you prove these” - Z (ELY | X = x]) p(x)

xXeX
= E (E[Y | X]) B def. expected value of function



Expected Value Is a Lossy Summary

P(X)
P(X)




Variance

Definition: [he variance of a random variable Is

Var(X) =

= [(X—

[ X])?|.

.e., E[ f(X)] where f(x) = (x — -[X])z.

—quivalently,
Var(X) =

(Why?)

= [X?] - (E[X))°




Covariance

Definition: The covariance of two random variables Is

Cov(X,Y) =

- [(x -

- [ XY | =

=X ]

E[X)(Y — E[Y))]

-1 Y].

Large Negative

Covariance

Near Zero
Covariance

Question: \What is the range of Cov(X, Y)?

Large Positive
Covariance




Correlation

Definition: The correlation of two random variables IS
Cov(X, Y)

\/ Var(X)Var(Y)

Corr(X, Y) =

Large Negative Near Zero Large Positive
Covariance Covariance Covariance

Question: \What is the range of Corr(X, Y)?
hint: Var(X) = Cov(X, X)




INndependence and Decorrelation

* |[ndependent RVs have zero correlation (why?)

hint: Cov| X, Y| = E|XY]| — E[X]E]Y]

» Uncorrelated RVs (i.e., Cov(X, Y) = 0) might be dependent

(i.e., p(x,y) # p(xX)p(y)).

e Correlation (Pearson's correlation coefficient) shows linear relationships; but can
Miss nonlinear relationships

. Example: X ~ Uniform{—2, — 1,0,1,2}, Y = X?
e EIXY]=2(-2%Xx4)+.22%x4)+ 2(—1x1)+.2(1 x1)+ .2(0X%x0)
e E[X] =0
« So E[XY] - E[X]E[Y]=0-0E[Y]=0




Properties of Varlances

« Var|c] = 0 for constant ¢

e Var[cX] = ¢*Var[X] for constant ¢

e Var| X+ Y] = Var|X] + Var| Y] + 2Cov| X, Y]

* Forindependent X, Y,

Var| X + Y| = Var| X ]| + Var[ Y] (why?)



Estimation



Estimators

Definition: An estimator Is a procedure for estimating an unobserved quantity based on data.

Example: Estimating E[| X ]| forrv. X € |

|

F[X]

p(x)

-

—100 —50

50

100

Questions:

random
/ variable!

Suppose we can observe a different variable Y. Is Y a
good estimator of E[X ] in the following cases? Why or

why not?

1. Y ~ Uniform[0,10]

2. Y =E[X]+ Z, where Z ~ Uniform[0,]]
3. Y = FE[X]+ Z, where Z ~ N(0,100%)

4, Y=X

5. How would you estimate

| X7




Blas

Definition: The bias of an estimator X is its expected
difference from the true value of the estimated quantity X:

Bias(X) = F[X — X]

e Bias can be positive or negative or zero

+ When Bias(X) = 0, we say that the estimator X is unbiased

Questions:

What is the bias of the
following estimators of

- X7

1. Y ~ Uniform[0,10]

[ X] + Z,
where
Z ~ Uniform[0, 1]

2. Y=

3. Y=

_[X] .

_Z,

where Z ~ N(0,1007)
4. Y=X




INndependent and [dentically
Distributed (1.i.d.) Samples

* We usually won't try to estimate anything about a distribution based on only a single sample

* Usually, we use multiple samples from the same distribution
 Multile samples: This gives us more information
o Same distribution: We want to learn about a single population

* (One additional condition: the samples must be independent (why?)

Definition: \WWhen a set of random variables X, X,, ... are all independent,

and each has the same distribution X ~ F, we say they are i.i.d. (independent
and identically distributed), written

X, X,,... X F




Estimating Expected Value
via the Sample Mean

Example: \We have n i.i.d. samples from the same distribution F,

X, X, ... X, ' F

with E[X;] = u and Var(X;) = ¢~ for each X..

We want to estimate u.
Let's use the sample mean X = 2 X; to estimate p.
=1

Question: Is this estimator unbiased?
Question: Are more samples better? Why?



Estimating Expected Value
via the Sample Mean

Example: We have n i.i.d. samples from the same distribution F, _ | «
) X =F |~ ) X,
X, X, ... X ~F i=1
1 n
with E[X;] = p and Var(X,) = o for each X = — -[X ]
n
=1
We want to estimate u. [
=— ) U
Let's use the sample mean X = Z X; to estimate p. i
=1 |
= —nu
n

Question: s this estimator unbiased?
Question: Are more samples better? Why? = U. N



Variance of the estimator

* [ntuitively, more samples should make the estimator
"‘closer” 1o the estimated quantity

 We can formalize this intuition partly by characterizing
the variance Var| X| of the estimator itself.

e The variance of the estimator should decrease as
the number of samples increases

» Example: X for estimating y:

* [he variance of the estimator shrinks linearly as
the number of samples grows.



Variance of the estimator

] 1 &
* |ntuitively, more samples should make the estimator Var[X] = Var s ZXl]
"closer" to the estimated quantity =1
* We can formalize this intuition partly by characterizing = — Var [ZXl]
A n .
the variance Var| X| of the estimator itself. i=1
* The variance of the estimator should decrease as — iz zn: Var[X/]
the number of samples increases S
—_ . . | 1 n ,
« Example: X for estimating u: =— 20
 The variance of the estimator shrinks linearly as -
the number of samples grows. b 1,

n2 7



Concentration Inequalities

We want to obtain a confidence interval around our estimate - we want the difference from
the expected value to be small, and be consistently small.

We would like to be able to claim Pr ( X—u| < 6) > 1 —0 forsomeo,e > 0

This tells us that E[X] € {X — €, X + €} with a large probability, 1 — &

Confidence level: 0, width of interval: €

Pr( )_(—,u < 6) > |1 — o forany o, e > 0 that we pick (why?)

Var[)_(] = —o¢? means that with ‘enough” data we can get close to the expected value.
n

Suppose we have n = 10 samples, and we know o> = 81: so Var[X] = 8.1.

Question: What is Pr ( X—ul < 2)’?




Variance Is Not Enough

Knowing Var[X] = 8.1 is not enough to compute Pr(| X — 1| < 2)!

Examples:

(X) = 09 =g —> Var[X] = 8.1 and Pr(|X | <2)=0.9

P =005 itx=u+9 A= e ene g -
g = {000 TX=4 — Var[X] = 8.1 and Pr(| X — u| < 2) = 0.999

P =90.0005 i3 = u + 90 A= 8 Land RS T A —
(X) = oL =g —> Var[X] = 8.1 and Pr(|X | <2)=0.1

PY=3045 itx=u+3 A= 8. hand T s -



Hoeffding's Inequality

Theorem: Hoeffding's Inequality

Suppose that X, ..., X are distributed i.i.d, witha < X. < b.
Then for any € > 0,

_ _ 2ne?
Pr(|X— “[X]| > e) < 2exp (—(b_a)z)

- ( o 1n(2/5))
—quivalently, Pr{ | X — E[X] | < (b -a) > 1 —0.

2n




Chebyshev's Inequality

Theorem: Chebyshev's Inequality

Suppose that X, ..., X, are distributed i.i.d. with variance c?.

Then for any € > 0,

Pr(|X— (X ze) <2

—quivalently, Pr | | X — E[X] S\ —1>1-0




When to Use Chebyshey,
When to Use Hoeffding”

1
. Ifa < X; < b, then Var[X]] < —(b — a)*

1n(2/ 5) 1n(2/ 0) 1
. Hoeffding's inequality gives € = (b — a (b —

o’ (b — a)2 1
Chebyshev's inequality gives € = 4/ — (b — a)
on 4ém 2\/_

 Hoeffding's inequality gives a tighter bound®, but it can only be used on bounded random

variables

In(2/6) 1
N whenever < = o6< ~0.232
2 2\/5

« Chebyshev's inequality can be applied even for unbounded variables



Consistency

Definition: A sequence of random variables X, converges in probability
to a random variable X (written X, 4 X) if for all € > 0,

lim Pr(| X, — X| > ¢) = 0.

n— o0

. . > . . . Lo P
Definition: An estimator X for a quantity X is consistent if X — X.




Weak Law of Large Numbers

Proof:
Theorem: Weak Law of Large Numbers

1. We have already shown that E[X] = u
Let X, ..., X, be distributed i.i.d. with

2 2. By Chebyshey,
-|X;] = p and VarlX;] = o~ ) ) o2
Pr(|X— (X ze) <

Then the sample mean "~ ne?
[ for arbitrary € > 0
X:;in 3. Hence 1imPr(|)_(—,u Z€)=()
=1 n— o0
for any € > 0

IS a consistent estimator for (.

4. Hence X = . B




Summary

The variance Var| X | of a random variable X is its expected squared
distance from the mean

An estimator is a random variable representing a procedure for estimating
the value of an unobserved guantity based on observed data

Concentration inequalities let us bound the probability of a given
estimator being at least € from the estimated quantity

An estimator is consistent if it converges in probability to the estimated
guantity




