=stimation:
Sample Averages, Bias, ano
Concentration Inequalities

CMPUT 267: Basics of Machine Learning



| ogistics



>~ W

Recap
Estimators
Concentration Inequalities

Consistency

Outline



Recap

« Random variables are functions from sample to some value

 Upshot: A random variable takes different values with some probability

e [he value of one variable car
(loecause they are both functi

e Distributions of multip
porobabillity distribution

e ran

(joint

be Informative about the value of another
ons of the same sample)

dom variables are described by the joint

PMFE or joint

D

DF)

 Conditioning on a random variable gives a new distribution over others

« X isindependent of Y: conditioning on X does not give a new distribution

over Y

« X is conditionally independent of Y given Z:
PX,Y|Z)=PX|2)P(Y | Z)

P(Y|X,Z) =P

Z);



Recap

« Bayes’ Rule

px | y)p(y)
p(x)

ply | x) =

 [he expected value of a random variable is an average over its values,
weighted by the probability of each value

» The variance Var| X | of a random variable X is its expected squared
distance from the mean



Estimators

Definition: An estimator Is a procedure for estimating an unobserved quantity based on data.

Example: Estimating E[| X ]| forrv. X € |

|

F[X]

p(x)

-

—100 —50

50

100

Questions:

random
/ variable!

Suppose we can observe a different variable Y. Is Y a
good estimator of E[X ] in the following cases? Why or

why not?

1. Y ~ Uniform[0,10]

2. Y =E[X]+ Z, where Z ~ Uniform[0,]]
3. Y = FE[X]+ Z, where Z ~ N(0,100%)

4, Y=X

5. How would you estimate

| X7




Estimators

)A(: the estimator

How can we measure how good Xis at estimating the true value?

We can look at the properties of an estimator

Expected value, variance

A measure for how far )A( IS from the true value.

* [he expected value of this measure

Bias



Blas

Definition: The bias of an estimator X is its expected
difference from the true value of the estimated quantity X:

Bias(X) = F[X — X]

e Bias can be positive or negative or zero

+ When Bias(X) = 0, we say that the estimator X is unbiased



Blas

Definition: The bias of an estimator X is its expected

difference from the true value of the estimated quantity X:

Bias()A() =

“[X - X]

Questions:

What is the bias of the
following estimators of

-[ X7
1. Y ~ Uniform[0,10]

2. Y=E[X]+Z
where
Z ~ Uniform[0,1]

3. Y=FE[X]+Z
where Z ~ N(0,1007)

4, Y=X




INndependent and [dentically
Distributed (1.i.d.) Samples

* We usually won't try to estimate anything about a distribution based on only a single sample

* Usually, we use multiple samples from the same distribution
 Multile samples: This gives us more information
o Same distribution: We want to learn about a single population

* (One additional condition: the samples must be independent (why?)

Definition: \WWhen a set of random variables X, X,, ... are all independent,

and each has the same distribution X ~ F, we say they are i.i.d. (independent
and identically distributed), written

X, X,,... X F




Estimating Expected Value
via the Sample Mean

Example: \We have n i.i.d. samples from the same distribution F,

X, X, ... X, ' F

with E[X;] = u and Var(X;) = ¢~ for each X..

We want to estimate u.
Let's use the sample mean X = 2 X; to estimate p.
=1

Question: Is this estimator unbiased?
Question: Are more samples better? Why?



Estimating Expected Value
via the Sample Mean

Example: We have n i.i.d. samples from the same distribution F, _ | «
) X =F |~ ) X,
X, X, ... X ~F i=1
1 n
with E[X;] = p and Var(X,) = o for each X = — -[X ]
n
=1
We want to estimate u. [
=— ) U
Let's use the sample mean X = Z X; to estimate p. i
=1 |
= —nu
n

Question: s this estimator unbiased?
Question: Are more samples better? Why? = U. N



Estimating Expected Value
via the Sample Mean

Example: Coin flip. X: : value of coin flip i, X; € {0,1}, X. ~ Bernoulli, ii0

Question: Is this estimator unbiased?
Question: Are more samples better? \Why?




Variance of the estimator

* [ntuitively, more samples should make the estimator
‘closer” to the estimated quantity

 We can formalize this intuition partly by characterizing
the variance Var| X | of the estimator itself.

e [he variance of the estimator should decrease as
the number of samples increases



Variance of the estimator

o 1T ' - 1 n
!Intwtwe"\y, more sar ples shou d make the estimator Var(X] = Var | - Z X
closer” to the estimated quantity n &
 We can formalize this intuition partly by characterizing 1 n
the variance Var[X] of the estimator itself. =g var Z} A
* [he variance of the estimator should decrease as [
the number of samples increases = Z Var[X]
=1
« Example: X for estimating u: I &,
» The variance of the estimator shrinks linearly as T
the number of samples grows. | |
= —no* =—o’.

n2 7
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Variance of the estimator

. . Y P . _ 1 &
Example: X for estimating u: VarlX] = Var | ¥ Xi]
* The variance of the estimator shrinks linearly as it
the number of samples grows. | :
5 n— =—V X,
REy wve| 2
o Tal " " O 1 n
For finite n, how good of an estimate is X ? - — Y Var(X]
» We want the difference from the expected value to be lj
small, and be consistently small - we want to LI W
obtain a confidence interval around our estimate. ns =
1 1
= —no* =—o’.

n2 7



Confldence Iintervals

We want to obtain a confidence interval around our estimate - we want the difference from
the expected value to be small, and be consistently small.

We would like to be able to claim Pr ( X—u| < 6) > 1 —0 forsomeo,e > 0

This tells us that E[X] € {X — €, X + €} with a large probability, 1 — &

Confidence level: 0, width of interval: €

Pr( )_(—,u < 6) > |1 — o forany o, e > 0 that we pick (why?)

Var[)_(] = —o¢? means that with ‘enough” data we can get close to the expected value.
n

Suppose we have n = 10 samples, and we know o> = 81: so Var[X] = 8.1.

Question: What is Pr ( X—ul < 2)’?




Variance Is Not Enough

Knowing Var[X] = 8.1 is not enough to compute Pr(| X — 1| < 2)!

Examples:

(X) = 09 =g —> Var[X] = 8.1 and Pr(|X | <2)=0.9

P =005 itx=u+9 A= e ene g -
g = {000 TX=4 — Var[X] = 8.1 and Pr(| X — u| < 2) = 0.999

P =90.0005 i3 = u + 90 A= 8 Land RS T A —
(X) = oL =g —> Var[X] = 8.1 and Pr(|X | <2)=0.1

PY=3045 itx=u+3 A= 8. hand T s -



Hoeffding's Inequality

Theorem: Hoeffding's Inequality

Suppose that X, ..., X are distributed i.i.d, witha < X. < b.
Then for any € > 0,

_ _ 2ne?
Pr(|X— “[X]| > e) < 2exp (—(b_a)z)

- ( o 1n(2/5))
—quivalently, Pr{ | X — E[X] | < (b -a) > 1 —0.

2n




Chebyshev's Inequality

Theorem: Chebyshev's Inequality

Suppose that X, ..., X, are distributed i.i.d. with variance c?.

Then for any € > 0,

Pr(|X— (X ze) <2

—quivalently, Pr | | X — E[X] S\ —1>1-0




When to Use Chebyshey,
When to Use Hoeffding”

|
. Popoviciu's inequality: If a < X: < b, then Var[X;] < Z(b — a)?

1n(2/ 6) ln(2/ 0) 1
, Hoeffding's inequality gives € = (b — a (b — —

o’ (b —-a)y 1
Chebyshev's inequality gives € =4[/ — < (b — a)
on 4én 2\/_

 Hoeffding's inequality gives a tighter bound®, but it can only be used on bounded

random variables

In(2/0) 1
y whenever < — 0< ~0.232

2 2\/5

 Chebyshev's inequality can be applied even for unbounded variables



Consistency

Definition: A sequence of random variables X, converges in probability
to a random variable X (written X, 4 X) if for all € > 0,

lim Pr(| X, — X| > ¢) = 0.

n— o0

. . > . . . Lo P
Definition: An estimator X for a quantity X is consistent if X — X.




Weak Law of Large Numbers

Proof:
Theorem: Weak Law of Large Numbers

1. We have already shown that E[X] = u
Let X, ..., X, be distributed i.i.d. with

2 2. By Chebyshey,
-|X;] = p and VarlX;] = o~ ) ) o2
Pr(|X— (X ze) <

Then the sample mean "~ ne?
[ for arbitrary € > 0
X:;in 3. Hence 1imPr(|)_(—,u Z€)=()
=1 n— o0
for any € > 0

IS a consistent estimator for (.

4. Hence X = . B




Convergence Rate via Chebyshev

The convergence rate indicates how quickly the error in an estimator decays as the
number of samples grows.

_ 1
Example: Estimating mean of a distribution using X = — Z X;
n
i=1

* Recall that Chebyshev's inequality guarantees

Pr| | X —-E[X]]| < “1>1-5

. Convergence rate is thus O (1/\/%)



Sample Complexity

Definition:
The sample complexity of an estimator is the number of samples required to guarantee an
expected error of at most € with probability 1 — o, for given ¢ and €.

* \We want sample complexity to be small (why?)

o Sample complexity is determined by:

1. The estimator itself
e Smarter estimators can sometimes improve sample complexity

2. Properties of the data generating process
e |f the data are high-variance, we need more samples for an accurate estimate

 But we can reduce the sample complexity if we can bias our estimate toward the
correct value




Sample Complexity

Definition:
The sample complexity of an estimator is the number of samples required to guarantee an expected error
of at most € with probability 1 — o, for given 6 and €.

For 6 = 0.05, Chebyshev gives With Gaussian assumption and 6 = 0.03,

%]
o2 1 o € = 1.96——

on  1/0.05 \/n vn

= \/Z = 1.96—

O
& ¢ =44]— €
n
= 3 8462
O = 3.04——
— \/ﬁ =4.47— . 2
€

2

O
— n=1998—
62



How good Is an estimator?

Bias: whether an estimator is correct in expectation
Consistency: whether an estimator is correct in the limit of infinite data

Convergence rate: how fast the estimator approaches its own mean

e For an unbiased estimator, this Is also how tast Its error bounds shrink

We don't necessarily care about an estimator's being unbiased.

e Often, what we care about is our estimator's accuracy in expectation



Mean-Squared Error

 We don't necessarily care about an estimator's being unbiased.

e Often, what we care about is our estimator's accuracy in expectation

Definition: Mean squared error of an estimator X ofa quantity X:

MSE(®) = E |(X - EIX]Y|

A4

different!




Blas-Variance becomposition

Sometimes a biased estimator can be closer to the estimated quantity than an unbiased one.

MSE(X) =

E[(X — E[X])?] = E[(X — )] u=EIX

C[(X—E[X] + E[X]—u)?] _E[R] + E[R] =0

-[(()A( — -[)A(]) + b)z] b = Bias(X) = E[X] — u

E[(X — EIX])* + 2b(X — E[X]) + b?]

E[(X — E[XD?] + E[2b(X — E[X])] + E[b?] inearity of E

‘[()A( — ‘[X])z] + 2b -[()A( — -[)A(])] + b®  constants come out of
= Var[X] + 2bE[(X — E[X])] + b> def. variance
= Var[X] + 2b(E[X] — E[X]) + b> inearity of

= Var[X] + b>
= Var[X] + Bias(f()2 B



Blas-Variance [radeoft

MSE(X) = Var[X] + Bias(X)?

If we can decrease bias without increasing variance, error goes down
If we can decrease variance without increasing bias, error goes down
Question: Would we ever want to increase bias?

YES. If we can increase (squared) bias in a way that decreases variance
more, then error goes down!

* Interpretation: Biasing the estimator toward values that are more likely
to be true (based on prior information)



Downward-plased Mean Estimation

1 n
Example: Let's estimate y given i.i.d Xy, ..., X, with E|X;] = g using: ¥ = X;
p "9 ] [ X | = p 9 22100 ,221
This estimator Is biased: his estimator has low variance:
1 n 1 n
-|1Y | = [ X. Var(Y) = Var X.
7] [n+1()()i_z1 l] ) [n+100i21 l]
1 n
— - [ X X
1 |
_ U B |
n+ 100 ~ (n+ 1002 Z varldl
Bias(Y) 7 —100 ; =1
148 — — U =
n+ 1000 T L4100 =’

(n + 100)2



cstimating 1 Near O

Example: Supposethato =1, n = 10, and u = 0.1

MSE(X) = Var(X) + Bias(X)? MSE(Y) = Var(Y) + Bias(Y)?
= Var(X) vat) =~ " i ( 100 )2
" = O u
1 (n + 100)2 n+ 100
10 10 100\’
= + ( —0.1
1102 110

~9x 10~



Summary

The variance Var| X | of a random variable X is its expected squared
distance from the mean

An estimator is a random variable representing a procedure for estimating
the value of an unobserved guantity based on observed data

Concentration inequalities let us bound the probability of a given
estimator being at least € from the estimated quantity

An estimator is consistent if it converges in probability to the estimated
guantity




