Estimation: Sample Averages, Bias, and Concentration Inequalities

CMPUT 267: Basics of Machine Learning

Logistics

Outline

- 1. Recap
- 2. Estimators
- 3. Concentration Inequalities
- 4. Consistency

Recap

- **Random variables** are functions from sample to some value
	- Upshot: A random variable takes different values with some probability
- The value of one variable can be informative about the value of another (because they are both functions of the same sample)
	- Distributions of multiple random variables are described by the **joint** probability distribution (joint PMF or joint PDF)
	- **Conditioning** on a random variable gives a new distribution over others
	- X is **independent** of Y : conditioning on X does **not** give a new distribution over *Y*
		- X is conditionally independent of Y given Z : $P(Y | X, Z) = P(Y | Z);$ $P(X, Y | Z) = P(X | Z)P(Y | Z)$

Recap

• **Bayes' Rule**

- The **expected value** of a random variable is an average over its values, weighted by the probability of each value
- The **variance** $Var[X]$ of a random variable X is its expected squared distance from the mean

$$
p(y \mid x) = \frac{p(x \mid y)}{p(x)}
$$

p(*x* ∣ *y*)*p*(*y*)

Estimators

Example: Estimating $E[X]$ for r.v. $X \in \mathbb{R}$.

Definition: An estimator is a procedure for estimating an unobserved quantity based on data.

-
-
-
-
-

Estimators

- *X*: the estimator ̂
- How can we measure how good X is at estimating the true value?
- We can look at the properties of an estimator
- Expected value, variance
- A measure for how far X is from the true value. ̂
	- The expected value of this measure
- **• Bias**

̂

Bias

Definition: The bias of an estimator X is its expected difference from the true value of the estimated quantity X : ̂ $Bias(\hat{X}) = \mathbb{E}[\hat{X} - X]$ ̂

- Bias can be positive or negative or zero
- When $Bias(X) = 0$, we say that the estimator X is **unbiased** ̂

̂

Bias

Definition: The bias of an estimator X is its expected difference from the true value of the estimated quantity X : ̂ $Bias(\hat{X}) = \mathbb{E}[\hat{X} - X]$ ̂

Questions:

What is the **bias** of the following estimators of $[X]$?

- 1. $Y \sim$ Uniform[0,10]
- 2. $Y = \mathbb{E}[X] + Z$, where $Z \sim$ Uniform[0,1]
- 3. $Y = E[X] + Z$, where $Z \thicksim N(0,100^2)$

4. *Y* = *X*

Independent and Identically Distributed (i.i.d.) Samples

- We usually won't try to estimate anything about a distribution based on only a single sample
- Usually, we use multiple samples from the same distribution
	- *• Multiple samples:* This gives us more information
	- *Same distribution:* We want to learn about a single population
- One additional condition: the samples must be independent (**why?**)

and each has the same distribution $X\thicksim F$, we say they are **i.i.d.** (independent $|$ and identically distributed), written

Definition: When a set of random variables $X_1, X_2, ...$ are all independent,

$$
X_1, X_2, \ldots \stackrel{i.i.d.}{\sim} F.
$$

Estimating Expected Value via the Sample Mean

Example: We have n i.i.d. samples from the same distribution F ,

 $X_1, X_2, \ldots, X_n \overset{\iota \ldots \alpha}{\sim} F,$

with $\mathbb{E}[X_i] = \mu$ and $\text{Var}(X_i) = \sigma^2$ for each X_i .

We want to estimate μ .

Let's use the **sample mean** $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ to estimate μ . 1 *n n* ∑ *i*=1

Question: Is this estimator unbiased? **Question:** Are more samples better? Why?

-
- *i*.*i*.*d* ∼ *F*
-

 X_i to estimate μ

Estimating Expected Value via the Sample Mean

Example: We have n i.i.d. samples from the same distribution F , *i*.*i*.*d* ∼ *F*

 $X_1, X_2, \ldots, X_n \overset{\iota \ldots \alpha}{\sim} F,$

with $\mathbb{E}[X_i] = \mu$ and $\text{Var}(X_i) = \sigma^2$ for each X_i .

We want to estimate μ .

Let's use the **sample mean** $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ to estimate μ . 1 *n n* ∑ *i*=1

Question: Is this estimator unbiased? **Question:** Are more samples better? Why?

 X_i to estimate μ

Example: Coin flip. X_i : value of coin flip $i, X_i \in \{0,1\}$, $X_i \sim$ Bernoulli, iid

Question: Is this estimator unbiased? $= \mu$. **Question:** Are more samples better? Why?

- Intuitively, more samples should make the estimator "closer" to the estimated quantity
- We can formalize this intuition partly by characterizing the variance $Var[X]$ of the estimator itself. ̂
	- The variance of the estimator should decrease as the number of samples increases

- Intuitively, more samples should make the estimator "closer" to the estimated quantity
- We can formalize this intuition partly by characterizing the variance $Var[X]$ of the estimator itself. ̂
	- The variance of the estimator should decrease as the number of samples increases
- **Example:** X for estimating μ : \bar{X} for estimating μ
	- The variance of the estimator shrinks linearly as the number of samples grows.

- Intuitively, more samples should make the estimator "closer" to the estimated quantity
- We can formalize this intuition partly by characterizing the variance $Var[X]$ of the estimator itself. ̂
	- The variance of the estimator should decrease as the number of samples increases
- **Example:** X for estimating μ : \bar{X} for estimating μ
	- The variance of the estimator shrinks linearly as the number of samples grows.

• **Example:** X for estimating μ : \bar{X} for estimating μ

• The variance of the estimator shrinks **linearly** as the number of samples grows.

- For finite n , how good of an estimate is X ?
- We want the difference from the expected value to be **small**, and be **consistently** small - we want to obtain a confidence interval around our estimate.

$$
\bullet \quad \hat{X} \xrightarrow{n \to \infty} \mu
$$

̂

Confidence intervals

- the expected value to be small, and be consistently small.
- We would like to be able to claim $\Pr |X \mu| < \epsilon$ $> 1 \delta$ for some
- This tells us that $\mathbb{E}[\bar{X}] \in \{\bar{X} \epsilon, \bar{X} + \epsilon\}$ with a large probability, 1δ
- Confidence level: δ , width of interval: ϵ
- Pr \vert $\vert X \mu \vert < \epsilon$ $> 1 \delta$ for any $\delta, \epsilon > 0$ that we pick (why?) $\Pr \left(\left| \bar{X} - \mu \right| < \epsilon \right) > 1 - \delta$ for any $\delta, \epsilon > 0$
- $Var[\bar{X}] = -\sigma^2$ means that with "enough" data we can get close to the expected value. 1 *n σ*2
- Suppose we have $n = 10$ samples, and we know $\sigma^2 = 81$; so $\text{Var}[\bar{X}] = 8.1$.
- **Question:** What is $\Pr |X \mu| < 2$? $\Pr\left(\left|\bar{X}-\mu\right|<2\right)$

• We want to obtain a confidence interval around our estimate - we want the difference from

$$
\Pr\left(\left|\bar{X} - \mu\right| < \epsilon\right) > 1 - \delta \text{ for some } \delta, \epsilon > 0
$$

Variance Is Not Enough

Knowing $Var[X] = 8.1$ is not enough to compute $Pr(|X - \mu| < 2)$! **Examples:**

$$
p(\bar{x}) = \begin{cases} 0.9 & \text{if } \bar{x} = \mu \\ 0.05 & \text{if } \bar{x} = \mu \pm 9 \end{cases} \Longrightarrow
$$

$$
p(\bar{x}) = \begin{cases} 0.999 & \text{if } \bar{x} = \mu \\ 0.0005 & \text{if } \bar{x} = \mu \pm 90 \end{cases} \Longrightarrow
$$

$$
p(\bar{x}) = \begin{cases} 0.1 & \text{if } \bar{x} = \mu \\ 0.45 & \text{if } \bar{x} = \mu \pm 3 \end{cases} \Longrightarrow
$$

 $Var[\bar{X}] = 8.1$ is **not enough** to compute $Pr(|\bar{X} - \mu| < 2)$

- $Var[\bar{X}] = 8.1$ and $Pr(|\bar{X} \mu| < 2) = 0.9$
- $Var[\bar{X}] = 8.1$ and $Pr(|\bar{X} \mu| < 2) = 0.999$
- $Var[\bar{X}] = 8.1$ and $Pr(|\bar{X} \mu| < 2) = 0.1$

Hoeffding's Inequality

Theorem: Hoeffding's Inequality Suppose that $X_1, ..., X_n$ are distributed i.i.d, with $a \leq X_i \leq b$. Then for any $\epsilon > 0$, $Pr\left(\left|\bar{X} - \mathbb{E}[\bar{X}]\right| \geq \epsilon\right)$

Equivalently, $Pr \left[|X - \mathbb{E}[X]| \le (b - a) \sqrt{b - a} \right]$ $\ge 1 - \delta$. $\Pr\left(\left|\bar{X}-\mathbb{E}[\bar{X}]\right|\leq (b-a)\right)$

$$
b-a\sqrt{\frac{\ln(2/\delta)}{2n}}.
$$

Chebyshev's Inequality

Theorem: Chebyshev's Inequality Suppose that X_1, \ldots, X_n are distributed i.i.d. with variance σ^2 . Then for any $\epsilon > 0$, Equivalently, $Pr | |X - E[X]| \le 1 - \delta.$ $X_1,...,X_n$ are distributed i.i.d. with variance σ^2 $Pr\left(\left|\bar{X}-\mathbb{E}\right[\right]$ $\Pr \left[\left| \bar{X} - \mathbb{E}[\bar{X}] \right| \right] \leq$

.

$$
\left| \bar{X} \right| \ge \epsilon \right) \le \frac{\sigma^2}{n\epsilon^2}
$$

$$
\left| \frac{\sigma^2}{\delta n} \right| \ge 1 - \delta.
$$

When to Use Chebyshev, When to Use Hoeffding?

random variables

then
$$
Var[X_i] \leq \frac{1}{4}(b-a)^2
$$

$$
\ast \text{ whenever } \sqrt{\frac{\ln(2/\delta)}{2}} < \frac{1}{2\sqrt{\delta}} \iff
$$

• Chebyshev's inequality can be applied even for unbounded variables

*σ*2

bound^{*}, but it can only be used on bounded

\Rightarrow δ < ∼ 0.232

δn

. Popoviciu's inequality: If $a \leq X_i \leq b$, then $\text{Var}[X_i]$

• Hoeffding's inequality gives $\epsilon = (b - a) \sqrt{\frac{1}{2m}} = \sqrt{\frac{1}{2}} (b - a) \sqrt{\frac{1}{m}}$

Chebyshev's inequality gives $\epsilon =$

Consistency

Definition: A sequence of random variables X_n converges in probability to a random variable X (written $X_n \xrightarrow{P} X$) if for all $\epsilon > 0$, . *p* \rightarrow *X*) if for all $\epsilon > 0$ $\lim_{n \to \infty} \Pr(|X_n - X| > \epsilon) = 0$ *n*→∞

Definition: An estimator X for a quantity X is consistent if $X \stackrel{\sim}{\rightarrow} X$. ̂

$$
_{i}-X|>\epsilon)=0.
$$

 $\frac{p}{\cdot}$ $\rightarrow X$

Weak Law of Large Numbers

Theorem: Weak Law of Large Numbers

Let X_1, \ldots, X_n be distributed i.i.d. with $[X_i] = \mu$ and $Var[X_i] = \sigma^2$. $]=\sigma^2$

Then the sample mean

1. We have already shown that 2. By Chebyshev, for arbitrary $\epsilon > 0$ 3. Hence lim for any $\epsilon > 0$ 4. Hence $X \stackrel{r}{\rightarrow} \mu$. $[\bar{X}] = \mu$ $Pr\left(\left| \bar{X} - \mathbb{E}[\bar{X}] \right| \geq \epsilon \right) \leq$ *σ*2 $n\epsilon^2$ *n*→∞ $\Pr\left(\left|\bar{X}-\mu\right|\geq\epsilon\right)=0$ $\bar{X} \stackrel{p}{\rightarrow} \mu$. ■

$$
\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i
$$

is a **consistent estimator** for μ .

Proof:

Convergence Rate via Chebyshev

The **convergence rate** indicates how quickly the error in an estimator decays as the number of samples grows.

Example: Estimating mean of a distribution

• Recall that Chebyshev's inequality guarantees

ion using
$$
\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i
$$

$$
\Pr\left(|\bar{X} - \mathbb{E}[\bar{X}]| \le \sqrt{\frac{\sigma^2}{\delta n}} \ge 1 - \delta\right\}
$$

 $\sqrt{2}$ • Convergence rate is thus $O(1/\sqrt{n})$

Sample Complexity

• If the data are high-variance, we need more samples for an accurate estimate • But we can reduce the sample complexity if we can **bias** our estimate **toward the**

- We want sample complexity to be small (**why?**)
- Sample complexity is determined by:
	- 1. The **estimator** itself
		- Smarter estimators can sometimes improve sample complexity
	- 2. Properties of the data generating process
		-
		- correct value

Definition:

The **sample complexity** of an estimator is the number of samples required to guarantee an expected error of at most ϵ with probability $1 - \delta$, for given δ and ϵ .

Sample Complexity

$$
\epsilon = \sqrt{\frac{\sigma^2}{\delta n}} = \frac{1}{\sqrt{0.05}} \frac{\sigma}{\sqrt{n}}
$$

\n
$$
\iff \epsilon = 4.47 \frac{\sigma}{\sqrt{n}}
$$

\n
$$
\iff \sqrt{n} = 4.47 \frac{\sigma}{\epsilon}
$$

\n
$$
\iff n = 19.98 \frac{\sigma^2}{\epsilon^2}
$$

With $\,$ Gaussian assumption and $\delta=0.05,$

$$
\epsilon = 1.96 \frac{\sigma}{\sqrt{n}}
$$

$$
\iff \sqrt{n} = 1.96 \frac{\sigma}{\epsilon}
$$

$$
\iff n = 3.84 \frac{\sigma^2}{\epsilon^2}
$$

Definition:

The **sample complexity** of an estimator is the number of samples required to guarantee an expected error of at most ϵ with probability $1 - \delta$, for given δ and ϵ .

For $\delta = 0.05$, **Chebyshev** gives

How good is an estimator?

- **Bias:** whether an estimator is correct in expectation
- **Consistency:** whether an estimator is correct in the limit of infinite data
- **Convergence rate:** how fast the estimator approaches its own mean
	- For an *unbiased* estimator, this is also how fast its **error bounds** shrink
- We don't necessarily care about an estimator's being unbiased.
	- Often, what we care about is our estimator's **accuracy in expectation**

Mean-Squared Error

- We don't necessarily care about an estimator's being unbiased.
	- Often, what we care about is our estimator's **accuracy in expectation**

Definition: Mean squared error of an estimator X of a quantity X: ̂

̂

$$
MSE(\hat{X}) = \mathbb{E}\left[(\hat{X} - \mathbb{E}[X])^2 \right]
$$

different!

Bias-Variance Decomposition

- - $MSE(\hat{X}) = \mathbb{E}[(\hat{X} \mathbb{E}[X])^2]$ ̂ $]=\mathbb{E}[(\hat{X}-\mu)^2]$] $=$ $\mathbb{E}[(X - \mathbb{E}[X] + \mathbb{E}[X] - \mu)]$ ̂ ̂ ̂ 2] $= \mathbb{E}[(\hat{X} - \mathbb{E}[\hat{X}]) + b)$ ̂ 2] $=$ $\mathbb{E}[(\hat{X} - \mathbb{E}[\hat{X}])^2 + 2b(\hat{X} - \mathbb{E}[\hat{X}]) + b^2]$ ̂ ̂ $= \mathbb{E}[(\hat{X} - \mathbb{E}[\hat{X}])$ ̂ 2] + $E[2b(\hat{X} - E[\hat{X}])]$ + $E[b^2]$ ̂ $= \mathbb{E}[(\hat{X} - \mathbb{E}[\hat{X}])$ ̂ 2 $] + 2b\mathbb{E}[(\hat{X} - \mathbb{E}[\hat{X}])] + b^2$ ̂ $= \text{Var}[\hat{X}] + 2b\mathbb{E}[(\hat{X} - \mathbb{E}[\hat{X}])] + b^2$ ̂ ̂ $= \text{Var}[\hat{X}] + 2b(\mathbb{E}[\hat{X}] - \mathbb{E}[\hat{X}]) + b^2$ ̂ ̂ ̂ $-E[X] + E[X] = 0$ ̂ $b = \text{Bias}(X) = \mathbb{E}[X] - \mu$ ̂ linearity of E constants come out of E linearity of E def. variance
		-
		-
		-
		-
		-
		-
		-
		- $=$ Var[\hat{X}] + b^2 ̂
		- $=$ Var[X] + Bias(X)² ̂

Sometimes a biased estimator can be closer to the estimated quantity than an unbiased one.

Bias-Variance Tradeoff

- If we can decrease bias without increasing variance, error goes down
- If we can decrease variance without increasing bias, error goes down
- **Question:** Would we ever want to increase bias?
- *YES.* If we can increase (squared) bias in a way that **decreases variance** more, then error goes down!
	- **Interpretation:** Biasing the estimator toward values that are more likely to be true (based on prior information)

$MSE(X) = Var[X] + Bias(X)$ ̂ ̂ ̂ 2

This estimator is biased:

Downward-biased Mean Estimation **Example:** Let's estimate μ given i.i.d $X_1, ..., X_n$ with $\mathbb{E}[X_i] = \mu$ using: $Y =$ 1 *n*+100 *n* ∑ *i*=1 *Xi* $[Y] = \mathbb{E}$ 1 *n* + 100 *n* ∑ *i*=1 *Xi*] = 1 *n* + 100 *n* ∑ *i*=1 $[X_i]$ = *n* $\frac{1}{n+100}$ $\frac{n}{n+100} \mu - \mu = \frac{-100}{n+100} \mu$ This estimator has low variance: $Var(Y) = Var$ 1 *n* + 100 *n* ∑ *i*=1 *Xi*] = 1 $(n + 100)^2$ Var *n* ∑ *i*=1 *Xi*] = 1 $(n + 100)^2$ *n* ∑ *i*=1 Var[*Xi*] = *n* $(n + 100)^2$ *σ*2

Estimating *μ* Near 0

Example: Suppose that $\sigma = 1$, $n = 10$, and $\mu = 0.1$

 $Bias(\bar{X}) = 0$

$$
MSE(\bar{X}) = Var(\bar{X}) + Bias(\bar{X})^{2}
$$

= Var(\bar{X}) Var(\bar{X}) = $\frac{\sigma^{2}}{n}$
= $\frac{1}{10}$

 $MSE(Y) = Var(Y) + Bias(Y)^{2}$ 2

$$
= \frac{n}{(n+100)^2} \sigma^2 + \left(\frac{100}{n+100}\mu\right)
$$

$$
= \frac{10}{110^2} + \left(\frac{100}{110}0.1\right)^2
$$

$$
\approx 9 \times 10^{-4}
$$

Summary

• An **estimator** is a random variable representing a procedure for estimating

- The **variance** $Var[X]$ of a random variable X is its expected squared distance from the mean
- the value of an unobserved quantity based on observed data
- **Concentration inequalities** let us bound the probability of a given estimator being at least ϵ from the estimated quantity
- quantity

• An estimator is **consistent** if it converges in probability to the estimated