Estimation: Sample Averages, Bias, and Concentration Inequalities

CMPUT 267: Basics of Machine Learning

Logistics

Outline

- 1. Recap
- 2. Estimators
- 3. Concentration Inequalities
- 4. Consistency

Recap

- Random variables are functions from sample to some value
 - Upshot: A random variable takes different values with some probability
- The value of one variable can be informative about the value of another (because they are both functions of the same sample)
 - Distributions of multiple random variables are described by the **joint** probability distribution (joint PMF or joint PDF)
 - Conditioning on a random variable gives a new distribution over others
 - X is **independent** of Y: conditioning on X does **not** give a new distribution over Y
 - X is conditionally independent of Y given Z: $P(Y \mid X, Z) = P(Y \mid Z);$ $P(X, Y \mid Z) = P(X \mid Z)P(Y \mid Z)$

Bayes' Rule \bullet

$$p(y \mid x) = \frac{p(x \mid y)}{p(x)}$$

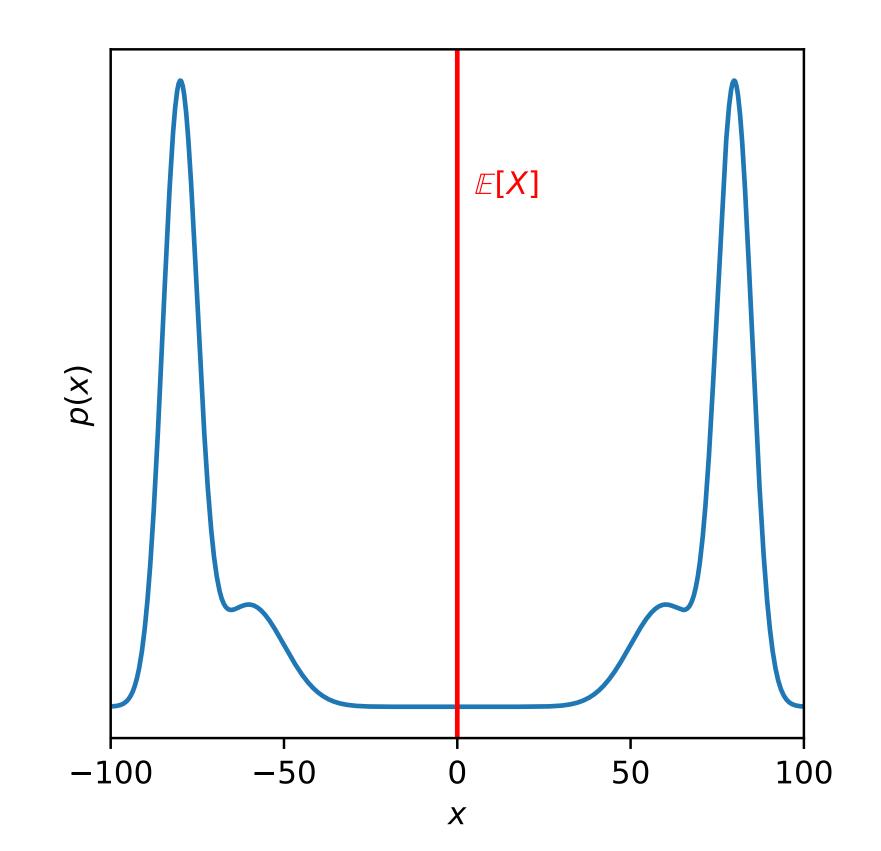
- The **expected value** of a random variable is an **average** over its values, weighted by the probability of each value
- The variance Var[X] of a random variable X is its expected squared distance from the mean

Hecap

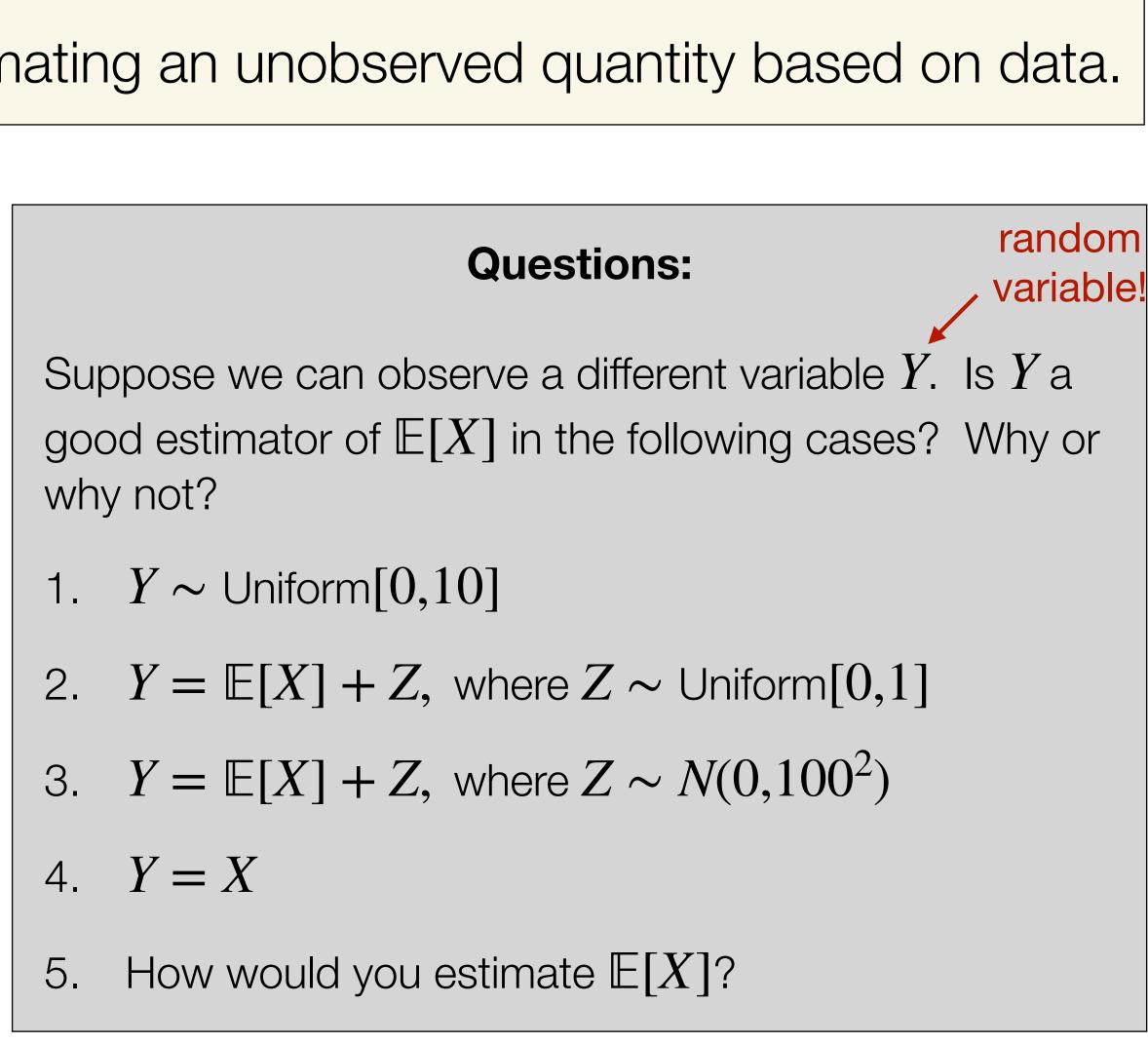
p(y)

Estimators

Example: Estimating $\mathbb{E}[X]$ for r.v. $X \in \mathbb{R}$.



Definition: An estimator is a procedure for estimating an unobserved quantity based on data.



Estimators

- \hat{X} : the estimator
- How can we measure how good \hat{X} is at estimating the true value?
- We can look at the properties of an estimator
- Expected value, variance
- A measure for how far \hat{X} is from the true value.
 - The expected value of this measure
- **Bias**

Definition: The **bias** of an estimator \hat{X} is its expected difference from the true value of the estimated quantity X: $\operatorname{Bias}(\hat{X}) = \mathbb{E}[\hat{X} - X]$

- Bias can be positive or negative or zero
- When $\operatorname{Bias}(\hat{X}) = 0$, we say that the estimator \hat{X} is unbiased

Bias

Bias

Definition: The **bias** of an estimator \hat{X} is its expected difference from the true value of the estimated quantity X: $\operatorname{Bias}(\hat{X}) = \mathbb{E}[\hat{X} - X]$

Questions:

What is the **bias** of the following estimators of $\mathbb{E}[X]$?

- 1. $Y \sim \text{Uniform}[0, 10]$
- 2. $Y = \mathbb{E}[X] + Z$, where $Z \sim \text{Uniform}[0,1]$
- 3. $Y = \mathbb{E}[X] + Z$, where $Z \sim N(0, 100^2)$

4. Y = X

Independent and Identically Distributed (i.i.d.) Samples

- We usually won't try to estimate anything about a distribution based on only a single sample
- Usually, we use **multiple samples** from the **same distribution**
 - *Multiple samples:* This gives us more information
 - Same distribution: We want to learn about a single population
- One additional condition: the samples must be **independent** (**why?**)

and identically distributed), written

Definition: When a set of random variables X_1, X_2, \ldots are all independent, and each has the same distribution $X \sim F$, we say they are i.i.d. (independent)

$$X_1, X_2, \ldots \stackrel{i.i.d.}{\sim} F.$$

Estimating Expected Value via the Sample Mean

Example: We have n i.i.d. samples from the same distribution F,

 $X_1, X_2, \ldots, X_n \stackrel{i.i.d}{\sim} F$,

with $\mathbb{E}[X_i] = \mu$ and $\operatorname{Var}(X_i) = \sigma^2$ for each X_i .

We want to estimate μ .

Let's use the sample mean $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ to estimate μ .

Question: Is this estimator **unbiased**? **Question:** Are more samples better? Why?

Estimating Expected Value via the Sample Mean

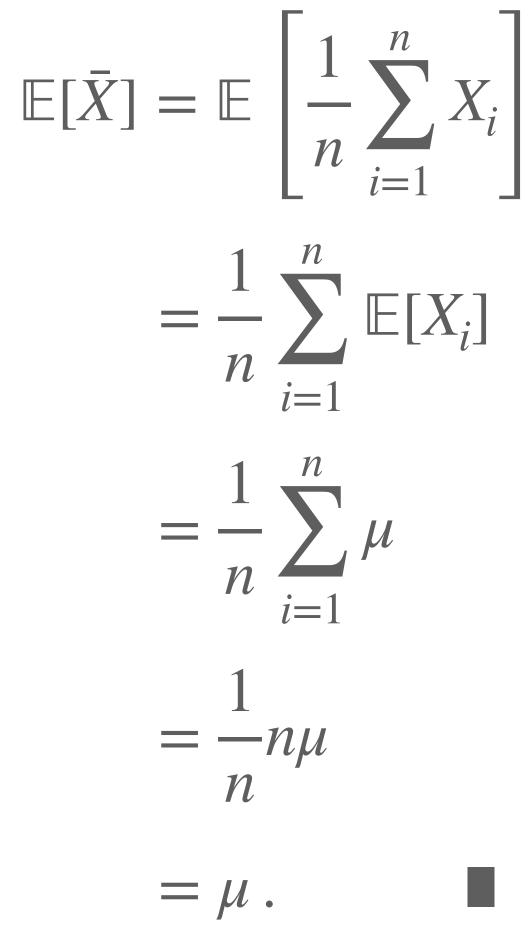
Example: We have n i.i.d. samples from the same distribution F, $X_1, X_2, \ldots, X_n \stackrel{i.i.d}{\sim} F,$

with $\mathbb{E}[X_i] = \mu$ and $\operatorname{Var}(X_i) = \sigma^2$ for each X_i .

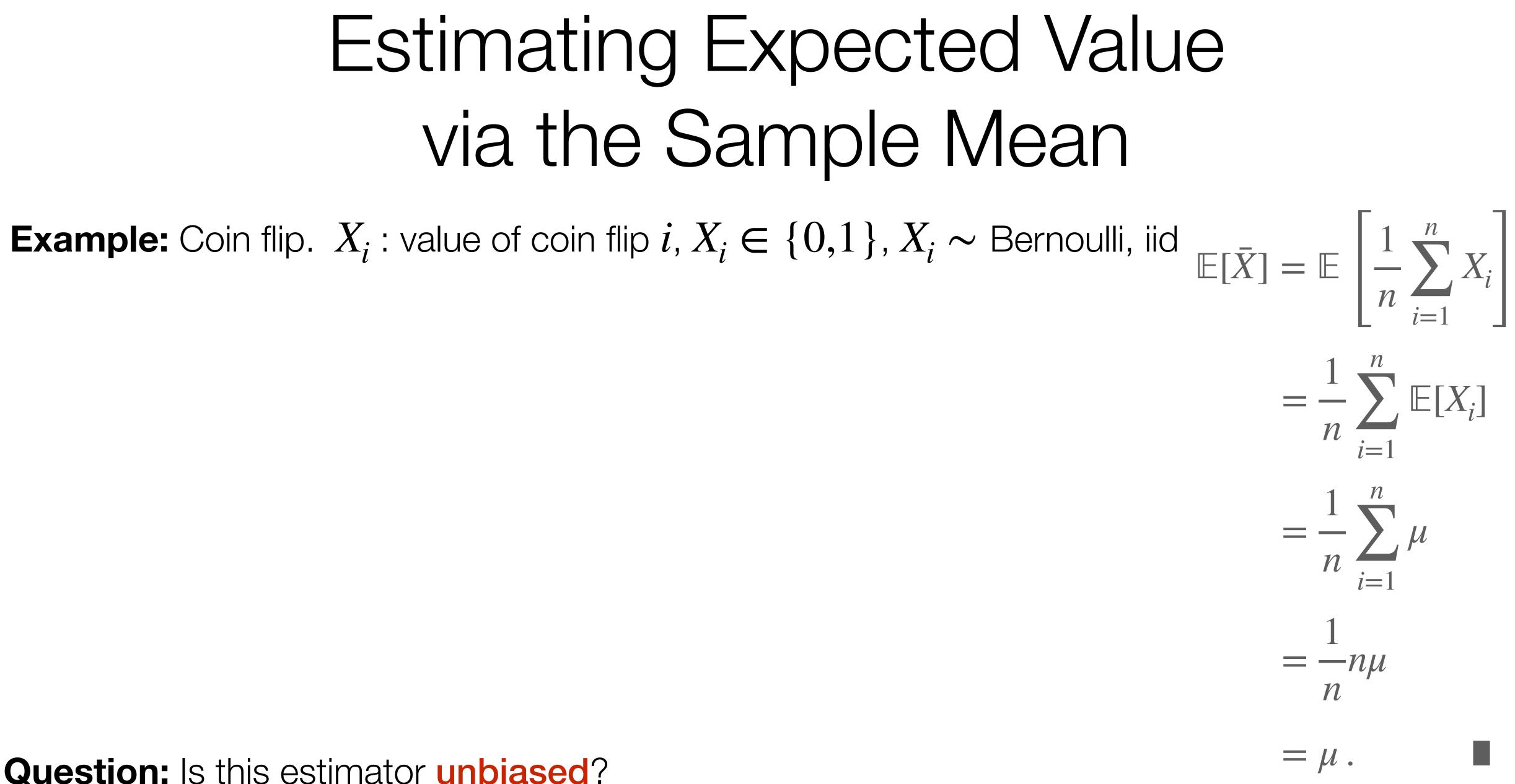
We want to estimate μ .

Let's use the sample mean $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ to estimate μ .

Question: Is this estimator **unbiased**? **Question:** Are more samples better? Why?

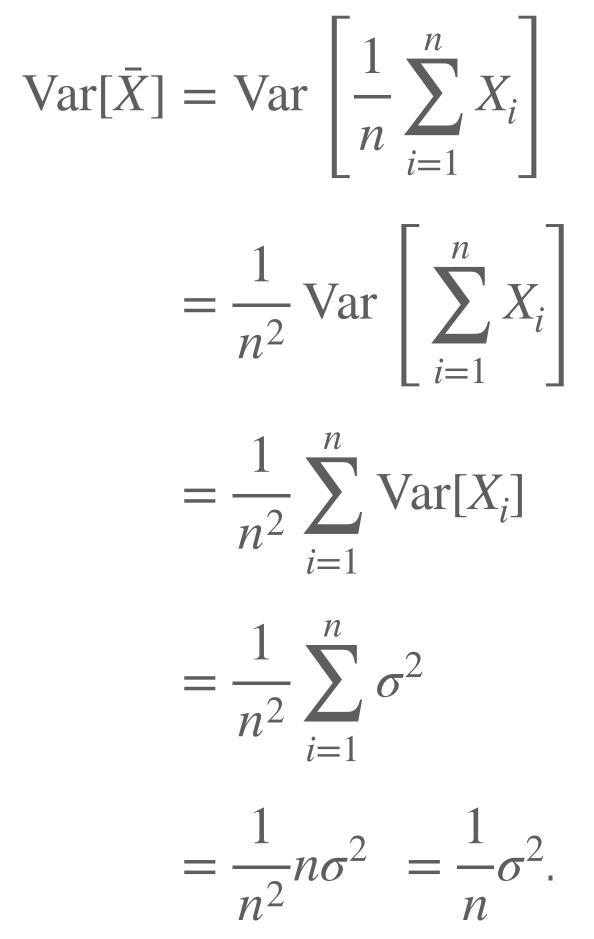


Question: Is this estimator **unbiased**? **Question:** Are more samples better? Why?

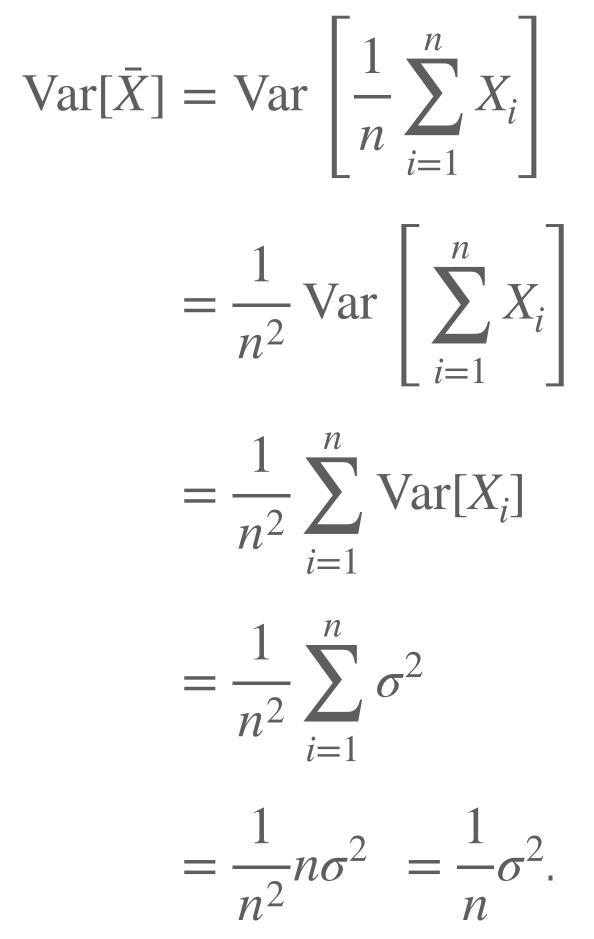


- Intuitively, more samples should make the estimator "closer" to the estimated quantity
- We can formalize this intuition partly by characterizing the variance $Var[\hat{X}]$ of the estimator itself.
 - The variance of the estimator should decrease as the number of samples increases

- Intuitively, more samples should make the estimator "closer" to the estimated quantity
- We can formalize this intuition partly by characterizing the variance $Var[\hat{X}]$ of the estimator itself.
 - The variance of the estimator should decrease as the number of samples increases
- **Example:** \overline{X} for estimating μ :
 - The variance of the estimator shrinks linearly as the number of samples grows.



- Intuitively, more samples should make the estimator "closer" to the estimated quantity
- We can formalize this intuition partly by characterizing the variance $Var[\hat{X}]$ of the estimator itself.
 - The variance of the estimator should decrease as the number of samples increases
- **Example:** \overline{X} for estimating μ :
 - The variance of the estimator shrinks linearly as the number of samples grows.

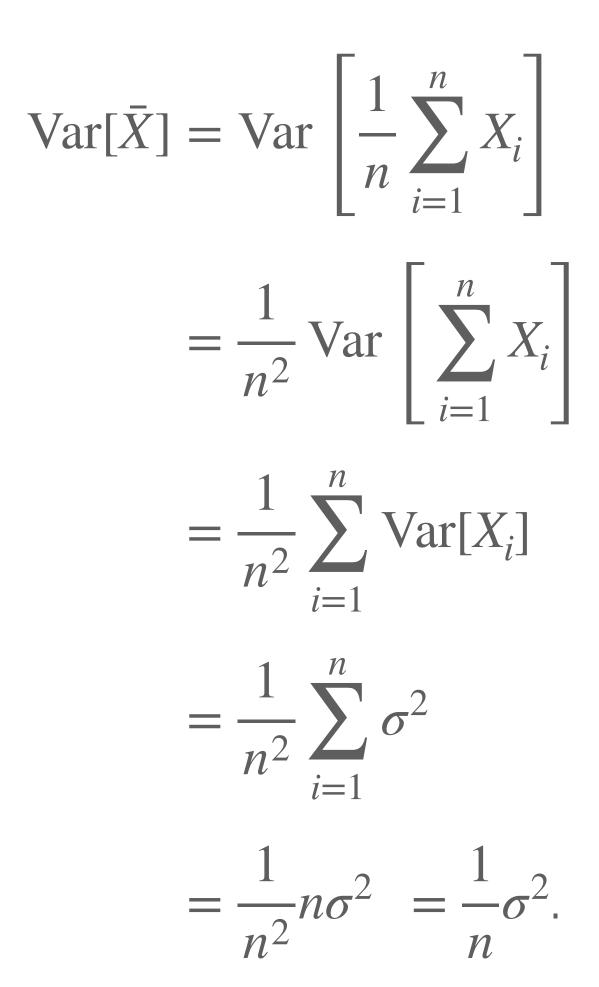


• **Example:** X for estimating μ :

• The variance of the estimator shrinks **linearly** as the number of samples grows.

•
$$\hat{X} \xrightarrow{n \to \infty} \mu$$

- For finite n, how good of an estimate is \hat{X} ?
- We want the difference from the expected value to be small, and be consistently small - we want to obtain a confidence interval around our estimate.



Confidence intervals

- the expected value to be small, and be consistently small.
- We would like to be able to claim $\Pr\left(\left| \bar{X} \right| \right)$
- This tells us that $\mathbb{E}[\bar{X}] \in \{\bar{X} \epsilon, \bar{X} + \epsilon\}$ with a large probability, 1δ
- Confidence level: δ , width of interval: ϵ

•
$$\Pr\left(\left|\bar{X}-\mu\right| < \epsilon\right) > 1 - \delta$$
 for any δ, ϵ

• $Var[\bar{X}] = \frac{1}{n}\sigma^2$ means that with "enough" data we can get close to the expected value.

• Suppose we have n = 10 samples, and we know $\sigma^2 = 81$; so $Var[\bar{X}] = 8.1$.

• **Question:** What is $\Pr\left(\left|\bar{X} - \mu\right| < 2\right)$?

• We want to obtain a confidence interval around our estimate - we want the difference from

$$-\mu | < \epsilon) > 1 - \delta$$
 for some $\delta, \epsilon > 0$

> 0 that we pick (why?)

Variance Is Not Enough

Knowing $\operatorname{Var}[\overline{X}] = 8.1$ is **not enough** to compute $\Pr(|\overline{X} - \mu| < 2)!$ **Examples:**

$$p(\bar{x}) = \begin{cases} 0.9 & \text{if } \bar{x} = \mu \\ 0.05 & \text{if } \bar{x} = \mu \pm 9 \end{cases} \implies$$

$$p(\bar{x}) = \begin{cases} 0.999 & \text{if } \bar{x} = \mu \\ 0.0005 & \text{if } \bar{x} = \mu \pm 90 \end{cases} \implies$$

$$p(\bar{x}) = \begin{cases} 0.1 & \text{if } \bar{x} = \mu \\ 0.45 & \text{if } \bar{x} = \mu \pm 3 \end{cases} \implies$$

- $Var[\bar{X}] = 8.1$ and $Pr(|\bar{X} \mu| < 2) = 0.9$
- Var $[\bar{X}] = 8.1$ and Pr $(|\bar{X} \mu| < 2) = 0.999$
- $Var[\bar{X}] = 8.1$ and $Pr(|\bar{X} \mu| < 2) = 0.1$

Hoeffding's Inequality

Theorem: Hoeffding's Inequality Suppose that X_1, \ldots, X_n are distributed i.i.d, with $a \leq X_i \leq b$. Then for any $\epsilon > 0$, $\Pr\left(\left|\bar{X} - \mathbb{E}[\bar{X}]\right| \ge \epsilon\right)$ Equivalently, $\Pr\left(\left|\bar{X} - \mathbb{E}[\bar{X}]\right| \le (k)\right)$

$$b(x) \le 2 \exp\left(-\frac{2n\epsilon^2}{(b-a)^2}\right).$$
$$b(x) = b - a \sqrt{\frac{\ln(2/\delta)}{2n}} \ge 1 - \delta$$

Chebyshev's Inequality

Theorem: Chebyshev's Inequality Suppose that X_1, \ldots, X_n are distributed i.i.d. with variance σ^2 . Then for any $\epsilon > 0$, $\Pr\left(\left|\bar{X}-\mathbb{E}\right|\right)$ Equivalently, $\Pr \left| \bar{X} - \mathbb{E}[\bar{X}] \right| \leq \sqrt{2}$

$$\left| \frac{\bar{X}}{\bar{X}} \right| \ge \epsilon \right) \le \frac{\sigma^2}{n\epsilon^2}$$
$$\left| \frac{\sigma^2}{\delta n} \right| \ge 1 - \delta.$$

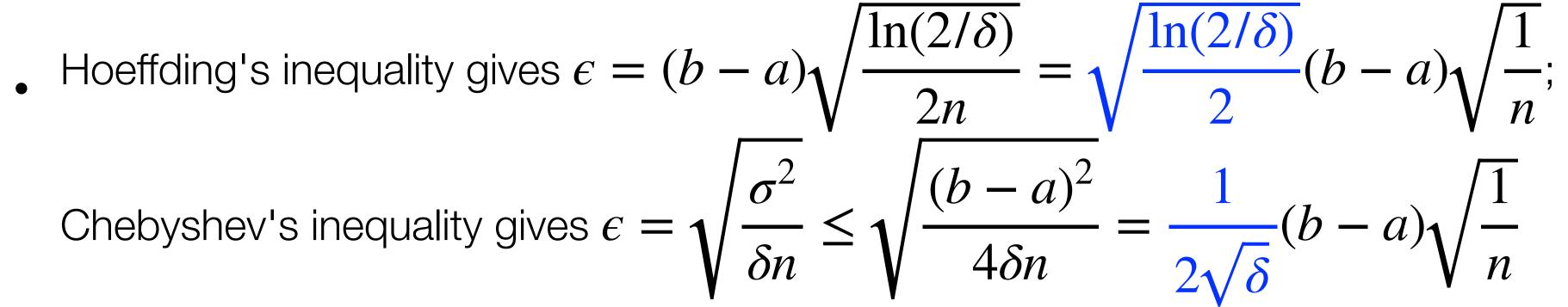
When to Use Chebyshev, When to Use Hoeffding?

• Popoviciu's inequality: If $a \leq X_i \leq b$,

* whenever
$$\sqrt{\frac{\ln(2/\delta)}{2}} < \frac{1}{2\sqrt{\delta}} \Leftarrow$$

Chebyshev's inequality can be applied even for unbounded variables \bullet

then
$$\operatorname{Var}[X_i] \le \frac{1}{4}(b-a)^2$$



bound*, but it can only be used on **bounded**

$\Rightarrow \delta < \sim 0.232$

Consistency

Definition: A sequence of random variables X_n converges in probability to a random variable X (written $X_n \xrightarrow{p} X$) if for all $\epsilon > 0$, lim $Pr(|X_n|)$

Definition: An estimator \hat{X} for a quantity X is **consistent** if $\hat{X} \xrightarrow{p} X$.

 $n \rightarrow \infty$

$$|-X| > \epsilon) = 0.$$

Theorem: Weak Law of Large Numbers

Let X_1, \ldots, X_n be distributed i.i.d. with $\mathbb{E}[X_i] = \mu$ and $\operatorname{Var}[X_i] = \sigma^2$.

Then the **sample mean**

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

is a **consistent estimator** for μ .

Weak Law of Large Numbers

Proof:

1. We have already shown that $\mathbb{E}[X] = \mu$ 2. By Chebyshev, $\Pr\left(\left|\bar{X} - \mathbb{E}[\bar{X}]\right| \ge \epsilon\right) \le \frac{\sigma^2}{nc^2}$ for arbitrary $\epsilon > 0$ 3. Hence $\lim_{n \to \infty} \Pr\left(\left|\bar{X} - \mu\right| \ge \epsilon\right) = 0$ for any $\epsilon > 0$ 4. Hence $\bar{X} \xrightarrow{p} \mu$.

Convergence Rate via Chebyshev

The **convergence rate** indicates how quickly the error in an estimator decays as the number of samples grows.

Example: Estimating mean of a distribution

• Recall that **Chebyshev's inequality** guarantees

$$\Pr\left(\left|\bar{X} - \mathbb{E}[\bar{X}]\right| \le \sqrt{\frac{\sigma^2}{\delta n}}\right) \ge 1 - \delta$$

• Convergence rate is thus $O\left(1/\sqrt{n}\right)$

ion using
$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Sample Complexity

Definition:

The sample complexity of an estimator is the number of samples required to guarantee an expected error of at most ϵ with probability $1 - \delta$, for given δ and ϵ .

- We want sample complexity to be small (**why?**) lacksquare
- Sample complexity is determined by:
 - 1. The **estimator** itself
 - Smarter estimators can sometimes improve sample complexity
 - 2. Properties of the data generating process
 - \bullet
 - lacksquarecorrect value

If the data are high-variance, we need more samples for an accurate estimate But we can reduce the sample complexity if we can bias our estimate toward the

Sample Complexity

Definition:

of at most ϵ with probability $1 - \delta$, for given δ and ϵ .

For $\delta = 0.05$, **Chebyshev** gives

$$\epsilon = \sqrt{\frac{\sigma^2}{\delta n}} = \frac{1}{\sqrt{0.05}} \frac{\sigma}{\sqrt{n}}$$
$$\iff \epsilon = 4.47 \frac{\sigma}{\sqrt{n}}$$
$$\iff \sqrt{n} = 4.47 \frac{\sigma}{\epsilon}$$
$$\iff n = 19.98 \frac{\sigma^2}{\epsilon^2}$$

The sample complexity of an estimator is the number of samples required to guarantee an expected error

With Gaussian assumption and $\delta = 0.05$,

$$\epsilon = 1.96 \frac{\sigma}{\sqrt{n}}$$

$$\iff \sqrt{n} = 1.96 \frac{\sigma}{\epsilon}$$

$$\iff n = 3.84 \frac{\sigma^2}{\epsilon^2}$$

How good is an estimator?

- Bias: whether an estimator is correct in expectation
- Consistency: whether an estimator is correct in the limit of infinite data
- Convergence rate: how fast the estimator approaches its own mean
 - For an unbiased estimator, this is also how fast its error bounds shrink
- We don't necessarily care about an estimator's being unbiased.
 - Often, what we care about is our estimator's accuracy in expectation

Mean-Squared Error

- We don't necessarily care about an estimator's being unbiased.
 - Often, what we care about is our estimator's accuracy in expectation lacksquare

Definition: Mean squared error of an estimator \hat{X} of a quantity X:

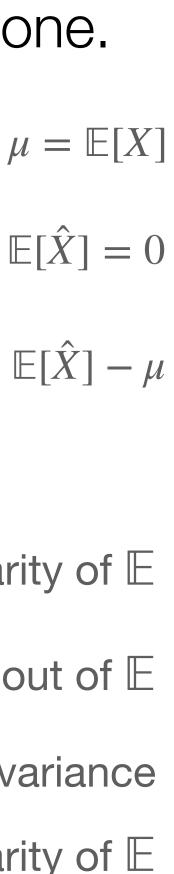
 $MSE(\hat{X}) = \mathbb{E}\left[(\hat{X} - \mathbb{E}[X])^2\right]$

Bias-Variance Decomposition

- - $MSE(\hat{X}) = \mathbb{E}[(\hat{X} \mathbb{E}[X])^2] = \mathbb{E}[(\hat{X} \mu)^2]$ $= \mathbb{E}[(\hat{X} - \mathbb{E}[\hat{X}] + \mathbb{E}[\hat{X}] - \mu)^2]$ $-\mathbb{E}[\hat{X}] + \mathbb{E}[\hat{X}] = 0$ $= \mathbb{E}[(\hat{X} - \mathbb{E}[\hat{X}]) + b)^2]$ $b = \text{Bias}(\hat{X}) = \mathbb{E}[\hat{X}] - \mu$ $= \mathbb{E}[(\hat{X} - \mathbb{E}[\hat{X}])^2 + 2b(\hat{X} - \mathbb{E}[\hat{X}]) + b^2]$ $= \mathbb{E}[(\hat{X} - \mathbb{E}[\hat{X}])^2] + \mathbb{E}[2b(\hat{X} - \mathbb{E}[\hat{X}])] + \mathbb{E}[b^2]$ linearity of \mathbb{E} $= \mathbb{E}[(\hat{X} - \mathbb{E}[\hat{X}])^2] + 2b\mathbb{E}[(\hat{X} - \mathbb{E}[\hat{X}])] + b^2$ constants come out of \mathbb{E} $= \operatorname{Var}[\hat{X}] + 2b\mathbb{E}[(\hat{X} - \mathbb{E}[\hat{X}])] + b^2$ def. variance $= \operatorname{Var}[\hat{X}] + 2b(\mathbb{E}[\hat{X}] - \mathbb{E}[\hat{X}]) + b^2$ linearity of \mathbb{E}

 - = Var $[\hat{X}] + b^2$
 - $= \operatorname{Var}[\hat{X}] + \operatorname{Bias}(\hat{X})^2$

Sometimes a biased estimator can be closer to the estimated quantity than an unbiased one.



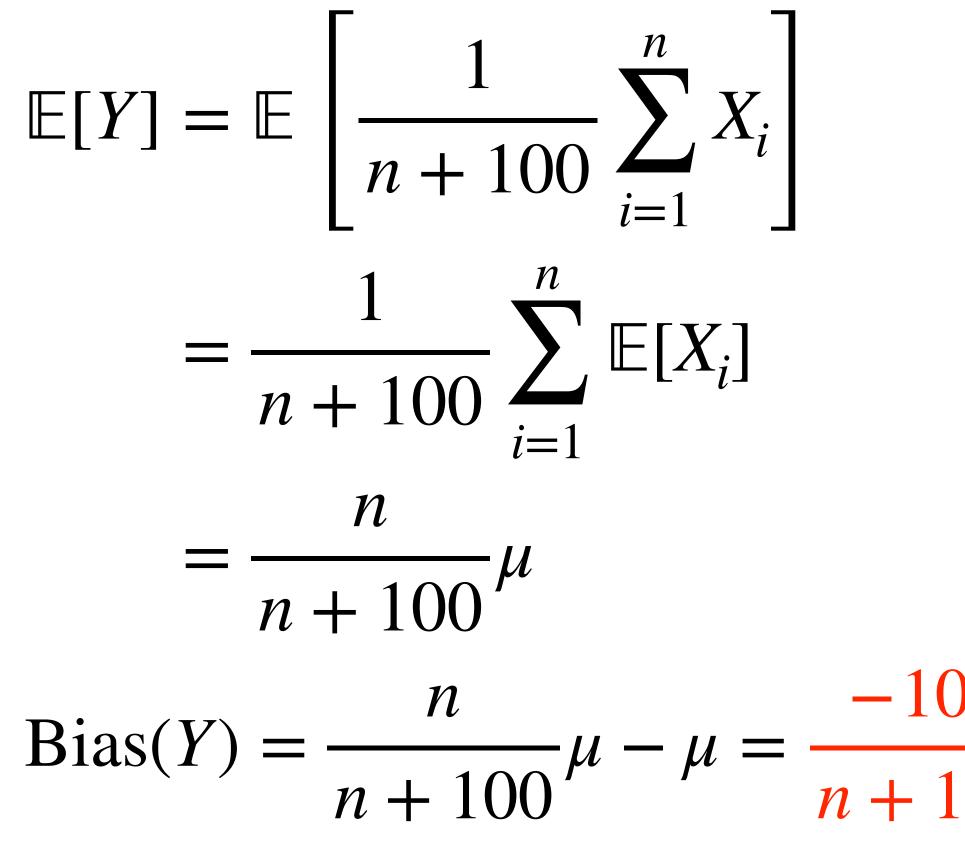
Bias-Variance Tradeoff

$MSE(\hat{X}) = Var[\hat{X}] + Bias(\hat{X})^2$

- If we can decrease bias without increasing variance, error goes down
- If we can decrease variance without increasing bias, error goes down
- Question: Would we ever want to increase bias?
- YES. If we can increase (squared) bias in a way that decreases variance more, then error goes down!
 - Interpretation: Biasing the estimator toward values that are more likely to be true (based on prior information)

Downward-biased Mean Estimation **Example:** Let's estimate μ given i.i.d X_1, \ldots, X_n with $\mathbb{E}[X_i] = \mu$ using: $Y = \frac{1}{n+100} \sum_{i=1}^n X_i$ This estimator has **low variance**: $\operatorname{Var}(Y) = \operatorname{Var} \left| \frac{1}{n+100} \sum_{i=1}^{n} X_i \right|$ $= \frac{1}{n+100} \sum_{i=1}^{n} \mathbb{E}[X_i]$ $= \frac{1}{(n+100)^2} \operatorname{Var} \left| \sum_{i=1}^{n} X_i \right|$ $= \frac{1}{(n+100)^2} \sum_{i=1}^{n} \text{Var}[X_i]$ $= \frac{1}{n+100} \mu$ Bias(Y) = $\frac{n}{n+100}\mu - \mu = \frac{-100}{n+100}\mu$ $=\frac{n}{(n+100)^2}\sigma^2$

This estimator is **biased**:



Estimating µ Near 0

Example: Suppose that $\sigma = 1$, n = 10, and $\mu = 0.1$

 $\operatorname{Bias}(\bar{X}) = 0$

$$MSE(\bar{X}) = Var(\bar{X}) + Bias(\bar{X})^{2}$$
$$= Var(\bar{X}) \quad Var(\bar{X}) = \frac{\sigma^{2}}{n}$$
$$= \frac{1}{10}$$

 $MSE(Y) = Var(Y) + Bias(Y)^2$

$$= \frac{n}{(n+100)^2} \sigma^2 + \left(\frac{100}{n+100}\mu\right)^2$$
$$= \frac{10}{110^2} + \left(\frac{100}{110}0.1\right)^2$$
$$\approx 9 \times 10^{-4}$$

Summary

- The variance Var[X] of a random variable X is its expected squared distance from the mean
- the value of an unobserved quantity based on observed data
- **Concentration inequalities** let us bound the probability of a given estimator being at least ϵ from the estimated quantity
- quantity

• An estimator is a random variable representing a procedure for estimating

• An estimator is **consistent** if it **converges in probability** to the estimated