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Recap
• Random variables are functions from sample to some value 

• Upshot: A random variable takes different values with some probability 

• The value of one variable can be informative about the value of another 
(because they are both functions of the same sample) 

• Distributions of multiple random variables are described by the joint 
probability distribution (joint PMF or joint PDF) 

• Conditioning on a random variable gives a new distribution over others 
•  is independent of : conditioning on  does not give a new distribution 

over  
•  is conditionally independent of  given :   

;       

X Y X
Y

X Y Z
P(Y ∣ X, Z) = P(Y ∣ Z) P(X, Y ∣ Z) = P(X ∣ Z)P(Y ∣ Z)



Recap
• Bayes’ Rule  

• The expected value of a random variable is an average over its values, 
weighted by the probability of each value 

• The variance  of a random variable  is its expected squared 
distance from the mean

Var[X] X

p(y ∣ x) =
p(x ∣ y)p(y)

p(x)



Estimators

Example: Estimating  for r.v. .𝔼[X] X ∈ ℝ
Questions: 

Suppose we can observe a different variable .  Is  a 
good estimator of  in the following cases?  Why or 
why not? 

1.  

2.  

3.  

4.  

5. How would you estimate ?

Y Y
𝔼[X]

Y ∼ Uniform[0,10]

Y = 𝔼[X] + Z,  where Z ∼ Uniform[0,1]

Y = 𝔼[X] + Z,  where Z ∼ N(0,1002)

Y = X

𝔼[X]

Definition: An estimator is a procedure for estimating an unobserved quantity based on data.

random

variable!



Estimators
• : the estimator 

• How can we measure how good  is at estimating the true value? 

• We can look at the properties of an estimator 

• Expected value, variance 

• A measure for how far  is from the true value. 
• The expected value of this measure 

• Bias

X̂

X̂

X̂



Bias

 

• Bias can be positive or negative or zero 

• When , we say that the estimator  is unbiased

Definition: The bias of an estimator  is its expected 
difference from the true value of the estimated quantity : 

X̂
X

Bias(X̂) = 𝔼[X̂ − X]

Bias(X̂) = 0 X̂



Bias
Definition: The bias of an estimator  is its expected 
difference from the true value of the estimated quantity : 

X̂
X

Bias(X̂) = 𝔼[X̂ − X]

Questions: 

What is the bias of the 
following estimators of 

? 

1.  

2. , 
where 

 

3. , 
where  

4.

𝔼[X]

Y ∼ Uniform[0,10]

Y = 𝔼[X] + Z

Z ∼ Uniform[0,1]

Y = 𝔼[X] + Z
Z ∼ N(0,1002)

Y = X



Independent and Identically 
Distributed (i.i.d.) Samples

• We usually won't try to estimate anything about a distribution based on only a single sample 
• Usually, we use multiple samples from the same distribution 

• Multiple samples: This gives us more information  
• Same distribution: We want to learn about a single population 

• One additional condition: the samples must be independent (why?) 

Definition: When a set of random variables  are all independent, 
and each has the same distribution , we say they are i.i.d. (independent 
and identically distributed), written  

.

X1, X2, …
X ∼ F

X1, X2, … i.i.d.∼ F



Estimating Expected Value  
via the Sample Mean

Example: We have  i.i.d. samples from the same distribution , 

, 

with  and  for each .   

We want to estimate . 

Let's use the sample mean  to estimate . 

Question: Is this estimator unbiased? 
Question: Are more samples better?  Why?

n F

X1, X2, …, Xn
i.i.d∼ F

𝔼[Xi] = μ Var(Xi) = σ2 Xi

μ

X̄ =
1
n

n

∑
i=1

Xi μ
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𝔼[X̄] = 𝔼 [ 1
n

n

∑
i=1

Xi]
=

1
n
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𝔼[Xi]
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=
1
n
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= μ . ∎



Estimating Expected Value  
via the Sample Mean

Example: Coin flip.   : value of coin flip , , Bernoulli, iidXi i Xi ∈ {0,1} Xi ∼
 

 

 

    

𝔼[X̄] = 𝔼 [ 1
n

n

∑
i=1

Xi]
=

1
n

n

∑
i=1

𝔼[Xi]

=
1
n

n

∑
i=1

μ

=
1
n

nμ

= μ . ∎Question: Is this estimator unbiased? 
Question: Are more samples better?  Why?



Variance of the Estimator
• Intuitively, more samples should make the estimator 

"closer" to the estimated quantity 

• We can formalize this intuition partly by characterizing 
the variance  of the estimator itself. 

• The variance of the estimator should decrease as 
the number of samples increases

Var[X̂]



Variance of the Estimator
• Intuitively, more samples should make the estimator 

"closer" to the estimated quantity 

• We can formalize this intuition partly by characterizing 
the variance  of the estimator itself. 

• The variance of the estimator should decrease as 
the number of samples increases 

• Example:  for estimating : 
• The variance of the estimator shrinks linearly as 

the number of samples grows.

Var[X̂]

X̄ μ

 

 

 

 

  .

Var[X̄] = Var [ 1
n

n

∑
i=1

Xi]
=

1
n2

Var [
n

∑
i=1

Xi]
=

1
n2

n

∑
i=1

Var[Xi]

=
1
n2

n

∑
i=1

σ2

=
1
n2

nσ2 =
1
n

σ2
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Variance of the Estimator
• Example:  for estimating : 

• The variance of the estimator shrinks linearly as 
the number of samples grows. 

•  

• For finite , how good of an estimate is  ? 

• We want the difference from the expected value to be 
small, and be consistently small - we want to 
obtain a confidence interval around our estimate.

X̄ μ

X̂ n→∞ μ

n X̂

 

 

 

 

  .

Var[X̄] = Var [ 1
n

n

∑
i=1

Xi]
=

1
n2

Var [
n

∑
i=1

Xi]
=

1
n2

n

∑
i=1

Var[Xi]

=
1
n2

n

∑
i=1

σ2

=
1
n2

nσ2 =
1
n

σ2



Confidence intervals
• We want to obtain a confidence interval around our estimate - we want the difference from 

the expected value to be small, and be consistently small. 

• We would like to be able to claim   for some  

• This tells us that  with a large probability,  

• Confidence level: , width of interval:  

•  for any  that we pick  (why?) 

•  means that with "enough" data we can get close to the expected value. 

• Suppose we have  samples, and we know ; so . 

• Question: What is ?

Pr ( X̄ − μ < ϵ) > 1 − δ δ, ϵ > 0

𝔼[X̄] ∈ {X̄ − ϵ, X̄ + ϵ} 1 − δ

δ ϵ

Pr ( X̄ − μ < ϵ) > 1 − δ δ, ϵ > 0

Var[X̄] =
1
n

σ2

n = 10 σ2 = 81 Var[X̄] = 8.1

Pr ( X̄ − μ < 2)



Variance Is Not Enough
Knowing  is not enough to compute ! 

Examples: 

 

 

Var[X̄] = 8.1 Pr( | X̄ − μ | < 2)

p(x̄) = {0.9 if x̄ = μ
0.05 if x̄ = μ ± 9

⟹ Var[X̄] = 8.1 and  Pr( | X̄ − μ | < 2) = 0.9

p(x̄) = {0.999 if x̄ = μ
0.0005 if x̄ = μ ± 90

⟹ Var[X̄] = 8.1 and  Pr( | X̄ − μ | < 2) = 0.999

p(x̄) = {0.1 if x̄ = μ
0.45 if x̄ = μ ± 3

⟹ Var[X̄] = 8.1 and  Pr( | X̄ − μ | < 2) = 0.1



Hoeffding's Inequality
Theorem: Hoeffding's Inequality 

Suppose that  are distributed i.i.d, with . 
Then for any  , 

. 

Equivalently, .

X1, …, Xn a ≤ Xi ≤ b
ϵ > 0

Pr ( X̄ − 𝔼[X̄] ≥ ϵ) ≤ 2 exp (−
2nϵ2

(b − a)2 )
Pr ( X̄ − 𝔼[X̄] ≤ (b − a)

ln(2/δ)
2n ) ≥ 1 − δ



Chebyshev's Inequality
Theorem: Chebyshev's Inequality 

Suppose that  are distributed i.i.d. with variance .  
Then for any , 

. 

Equivalently, .

X1, …, Xn σ2

ϵ > 0

Pr ( X̄ − 𝔼[X̄] ≥ ϵ) ≤
σ2

nϵ2

Pr X̄ − 𝔼[X̄] ≤
σ2

δn
≥ 1 − δ



When to Use Chebyshev, 
When to Use Hoeffding?

• Popoviciu's inequality: If , then  

• Hoeffding's inequality gives ; 

Chebyshev's inequality gives  

• Hoeffding's inequality gives a tighter bound*, but it can only be used on bounded 
random variables 

✴
whenever  

• Chebyshev's inequality can be applied even for unbounded variables

a ≤ Xi ≤ b Var[Xi] ≤
1
4

(b − a)2

ϵ = (b − a)
ln(2/δ)

2n
=

ln(2/δ)
2

(b − a)
1
n

ϵ =
σ2

δn
≤

(b − a)2

4δn
=

1

2 δ
(b − a)

1
n

ln(2/δ)
2

<
1

2 δ
⟺ δ < ∼ 0.232



Consistency

 

Definition: A sequence of random variables  converges in probability 
to a random variable  (written ) if for all , 

.

Xn
X Xn

p
→ X ϵ > 0

lim
n→∞

Pr( |Xn − X | > ϵ) = 0

Definition: An estimator  for a quantity  is consistent if .X̂ X X̂
p

→ X



Weak Law of Large Numbers

 

Theorem: Weak Law of Large Numbers 

Let  be distributed i.i.d. with 
 and .  

Then the sample mean 

  

is a consistent estimator for .

X1, …, Xn
𝔼[Xi] = μ Var[Xi] = σ2

X̄ =
1
n

n

∑
i=1

Xi

μ

Proof: 

1. We have already shown that  
2. By Chebyshev, 

 

for arbitrary  

3. Hence  

for any  

4. Hence .  

𝔼[X̄] = μ

Pr ( X̄ − 𝔼[X̄] ≥ ϵ) ≤
σ2

nϵ2

ϵ > 0

lim
n→∞

Pr ( X̄ − μ ≥ ϵ) = 0

ϵ > 0
X̄

p
→ μ ∎



Convergence Rate via Chebyshev
The convergence rate indicates how quickly the error in an estimator decays as the 
number of samples grows. 

Example: Estimating mean of a distribution using  

• Recall that Chebyshev's inequality guarantees 

     

• Convergence rate is thus 

X̄ =
1
n

n

∑
i=1

Xi

Pr X̄ − 𝔼[X̄] ≤
σ2

δn
≥ 1 − δ

O (1/ n)



Sample Complexity

 

• We want sample complexity to be small (why?) 

• Sample complexity is determined by: 
1. The estimator itself 

• Smarter estimators can sometimes improve sample complexity 
2. Properties of the data generating process 

• If the data are high-variance, we need more samples for an accurate estimate 
• But we can reduce the sample complexity if we can bias our estimate toward the 

correct value

Definition: 
The sample complexity of an estimator is the number of samples required to guarantee an 
expected error of at most  with probability , for given  and . ϵ 1 − δ δ ϵ



Sample Complexity

For , Chebyshev gives 

  

 

 

δ = 0.05

ϵ =
σ2

δn
=

1

0.05

σ

n

⟺ ϵ = 4.47
σ

n

⟺ n = 4.47
σ
ϵ

⟺ n = 19.98
σ2

ϵ2

With Gaussian assumption and  

      

 

δ = 0.05,

ϵ = 1.96
σ

n

⟺ n = 1.96
σ
ϵ

⟺ n = 3.84
σ2

ϵ2

Definition: 
The sample complexity of an estimator is the number of samples required to guarantee an expected error 
of at most  with probability , for given  and . ϵ 1 − δ δ ϵ



How good is an estimator?
• Bias: whether an estimator is correct in expectation 

• Consistency: whether an estimator is correct in the limit of infinite data 

• Convergence rate: how fast the estimator approaches its own mean 
• For an unbiased estimator, this is also how fast its error bounds shrink 

• We don't necessarily care about an estimator's being unbiased. 
• Often, what we care about is our estimator's accuracy in expectation



Mean-Squared Error
• We don't necessarily care about an estimator's being unbiased. 

• Often, what we care about is our estimator's accuracy in expectation 

Definition: Mean squared error of an estimator  of a quantity : 

 

X̂ X

MSE(X̂) = 𝔼 [(X̂ − 𝔼[X])2]
different!



Bias-Variance Decomposition
 

 

 

 

 

 

 

 

 

                                        

MSE(X̂) = 𝔼[(X̂ − 𝔼[X])2] = 𝔼[(X̂ − μ)2]
= 𝔼[(X̂−𝔼[X̂] + 𝔼[X̂]−μ)2]
= 𝔼[((X̂ − 𝔼[X̂]) + b)2]
= 𝔼[(X̂ − 𝔼[X̂])2 + 2b(X̂ − 𝔼[X̂]) + b2]
= 𝔼[(X̂ − 𝔼[X̂])2] + 𝔼[2b(X̂ − 𝔼[X̂])] + 𝔼[b2]
= 𝔼[(X̂ − 𝔼[X̂])2] + 2b𝔼[(X̂ − 𝔼[X̂])] + b2

= Var[X̂] + 2b𝔼[(X̂ − 𝔼[X̂])] + b2

= Var[X̂] + 2b(𝔼[X̂] − 𝔼[X̂]) + b2

= Var[X̂] + b2

= Var[X̂] + Bias(X̂)2 ∎

−𝔼[X̂] + 𝔼[X̂] = 0

b = Bias(X̂) = 𝔼[X̂] − μ

μ = 𝔼[X]

Sometimes a biased estimator can be closer to the estimated quantity than an unbiased one.

linearity of 𝔼

constants come out of 𝔼

linearity of 𝔼
def. variance



Bias-Variance Tradeoff

 

• If we can decrease bias without increasing variance, error goes down 

• If we can decrease variance without increasing bias, error goes down 

• Question: Would we ever want to increase bias? 

• YES.  If we can increase (squared) bias in a way that decreases variance 
more, then error goes down! 

• Interpretation: Biasing the estimator toward values that are more likely 
to be true (based on prior information)

 MSE(X̂) = Var[X̂] + Bias(X̂)2



Downward-biased Mean Estimation
Example: Let's estimate  given i.i.d  with  using:  μ X1, …, Xn 𝔼[Xi] = μ Y =

1
n+100

n

∑
i=1

Xi

This estimator is biased: 

 

 

 

𝔼[Y] = 𝔼 [ 1
n + 100

n

∑
i=1

Xi]
=

1
n + 100

n

∑
i=1

𝔼[Xi]

=
n

n + 100
μ

Bias(Y) =
n

n + 100
μ − μ =

−100
n + 100

μ

This estimator has low variance: 

 

 

 

Var(Y) = Var [ 1
n + 100

n

∑
i=1

Xi]
=

1
(n + 100)2

Var [
n

∑
i=1

Xi]
=

1
(n + 100)2

n

∑
i=1

Var[Xi]

=
n

(n + 100)2
σ2



  

 

MSE(X̄) = Var(X̄) + Bias(X̄)2

= Var(X̄)

=
1

10

Estimating  Near 0μ
Example: Suppose that , , and σ = 1 n = 10 μ = 0.1

Bias(X̄) = 0

Var(X̄) =
σ2

n

  

 

 

MSE(Y) = Var(Y) + Bias(Y)2

=
n

(n + 100)2
σ2 + ( 100

n + 100
μ)

2

=
10

1102
+ ( 100

110
0.1)

2

≈ 9 × 10−4



Summary

• The variance  of a random variable  is its expected squared 
distance from the mean 

• An estimator is a random variable representing a procedure for estimating 
the value of an unobserved quantity based on observed data 

• Concentration inequalities let us bound the probability of a given 
estimator being at least  from the estimated quantity 

• An estimator is consistent if it converges in probability to the estimated 
quantity

Var[X] X

ϵ


