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Recap

The variance Var| X | of a random variable X is its expected squared
distance from the mean

An estimator is a random variable representing a procedure for estimating
the value of an unobserved guantity based on observed data

Concentration inequalities let us bound the probability of a given
estimator being at least € from the estimated quantity

An estimator is consistent if it converges in probability to the estimated
guantity




Confldence Iintervals

We want to obtain a confidence interval around our estimate - we want the
difference from the expected value to be small, and be consistently small.

We would like to be able to claim Pr ( |)_( —u| < €> > 1 — 0 for some
0, > ()

This tells us that E[X] € {X — €, X + €} with a large probability, 1 — &

Confidence level: 0, width of interval: €






Hoeffding's Inequality

Theorem: Hoeffding's Inequality

Suppose that X, ..., X are distributed i.i.d, witha < X. < b.
Then for any € > 0,

_ _ 2ne’
Pr(|X— | X | 2 6) < 2exp (_(b—a)z)

o _ _ In(2/0)
—quivalently, Pr{ [X — E[X] | < (b - a) > > 1 —0.
n




Chebyshev's Inequality

Theorem: Chebyshev's Inequality

Suppose that X, ..., X, are distributed i.i.d. with variance o’

Then for any € > 0,

Pr( X — E[X] ze) <2

—quivalently, Pr |)_( — E[X] S\




When to Use Chebyshey,
When to Use Hoeffding”

|
. Popoviciu's inequality: If a < X: < b, then Var[X;] < Z(b — a)?

1n(2/ 6) ln(2/ 0) 1
, Hoeffding's inequality gives € = (b — a (b — —

o’ (b —-a)y 1
Chebyshev's inequality gives € =4[/ — < (b — a)
on 4én 2\/_

 Hoeffding's inequality gives a tighter bound®, but it can only be used on bounded

random variables

In(2/0) 1
y whenever < — 0< ~0.232

2 2\/5

 Chebyshev's inequality can be applied even for unbounded variables



Consistency

Definition: A sequence of random variables X, converges in probability
to a random variable X (written X, 4 X) if for all € > 0,

lim Pr(| X, — X| > ¢) = 0.

n— o0

. . > . . . Lo P
Definition: An estimator X for a quantity X is consistent if X — X.




Convergence Rate via Chebyshev

The convergence rate indicates how quickly the error in an estimator decays as the
number of samples grows.

_ 1
Example: Estimating mean of a distribution using X = — Z X;
n
i=1

* Recall that Chebyshev's inequality guarantees

Pr| | X —-E[X]]| < “1>1-5

. Convergence rate is thus O (1/\/%)



Sample Complexity

Definition:

The sample complexity of an estimator is the number of samples required to guarantee an expected error

of at most € with probability 1 — 9, fo

rgiven 0 and €.

Chebyshev gives
o2

€ =1/—

on




Sample Complexity

Definition:
The sample complexity of an estimator is the number of samples required to guarantee an expected error
of at most € with probability 1 — o, for given 6 and €.

For 0 = 0.05, Chebyshev gives

o 1 o
€ = _— =

on  1/0.05 \/n
— ¢=44T——
n
— \/ﬁ = 4.47—
€

2

O
— n=1998—
62




Sample Complexity

Definition:
The sample complexity of an estimator is the number of samples required to guarantee an expected error
of at most € with probability 1 — o, for given 6 and €.

For 6 = 0.05, Chebyshev gives With Gaussian assumption and 6 = 0.03,

%]
o2 1 o € = 1.96——

on  1/0.05 \/n vn

= \/Z = 1.96—

O
& ¢ =44]— €
n
= 3 8462
O = 3.04——
— \/ﬁ =4.47— . 2
€

2

O
— n=1998—
62



How good Is an estimator?

Bias: whether an estimator is correct in expectation
Consistency: whether an estimator is correct in the limit of infinite data

Convergence rate: how fast the estimator approaches its own mean

e For an unbiased estimator, this Is also how tast Its error bounds shrink

We don't necessarily care about an estimator's being unbiased.

e Often, what we care about is our estimator's accuracy in expectation



Mean-Squared Error

 We don't necessarily care about an estimator's being unbiased.

e Often, what we care about is our estimator's accuracy in expectation

Definition: Mean squared error of an estimator X ofa quantity X:

MSE(®) = E |(X - EIX]Y|

A4

different!




Blas-Variance becomposition

Sometimes a biased estimator can be closer to the estimated quantity than an unbiased one.

MSE(X) =

E[(X — E[X])?] = E[(X — )] u=EIX

C[(X—E[X] + E[X]—u)?] _E[R] + E[R] =0

-[(()A( — -[)A(]) + b)z] b = Bias(X) = E[X] — u

E[(X — EIX])* + 2b(X — E[X]) + b?]

E[(X — E[XD?] + E[2b(X — E[X])] + E[b?] inearity of E

‘[()A( — ‘[X])z] + 2b -[()A( — -[)A(])] + b®  constants come out of
= Var[X] + 2bE[(X — E[X])] + b> def. variance
= Var[X] + 2b(E[X] — E[X]) + b> inearity of

= Var[X] + b>
= Var[X] + Bias(f()2 B



Blas-Variance [radeoft

MSE(X) = Var[X] + Bias(X)?

If we can decrease bias without increasing variance, error goes down
If we can decrease variance without increasing bias, error goes down
Question: Would we ever want to increase bias?

YES. If we can increase (squared) bias in a way that decreases variance
more, then error goes down!

* Interpretation: Biasing the estimator toward values that are more likely
to be true (based on prior information)



Downward-plased Mean Estimation

1 n
Example: Let's estimate y given i.i.d Xy, ..., X, with E|X;] = g using: ¥ = X;
p "9 ] [ X | = p 9 22100 ,221
This estimator Is biased: his estimator has low variance:
1 n 1 n
-|1Y | = [ X. Var(Y) = Var X.
7] [n+1()()i_z1 l] ) [n+100i21 l]
1 n
— - [ X X
1 |
_ U B |
n+ 100 ~ (n+ 1002 Z varldl
Bias(Y) 7 —100 ; =1
148 — — U =
n+ 1000 T L4100 =’

(n + 100)2



cstimating 1 Near O

Example: Supposethato =1, n = 10, and u = 0.1

MSE(X) = Var(X) + Bias(X)? MSE(Y) = Var(Y) + Bias(Y)?
= Var(X) vat) =~ " i ( 100 )2
" = O u
1 (n + 100)2 n+ 100
10 10 100\’
= + ( —0.1
1102 110

~9x 10~



—stimating i

Example: Supposethatc = 1, n = 10,and u = 5

MSE(X) = Var(X) + Bias(X)? MSE(Y) = Var(Y) + Bias(Y)?
— Var(X) Var(X) = 0—2 n o) 100 :
& = ———0"+ 17
B i (n + 100)2 n+ 100
10 10 100\
= + 5
1102 110

~ 20.7






