Estimation: Sample Averages, Bias, and Concentration Inequalities

CMPUT 267: Basics of Machine Learning

Logistics

- 1. Recap
- 2. Sample Complexity

Outline

Hecap

- The variance Var[X] of a random variable X is its expected squared distance from the mean
- the value of an unobserved quantity based on observed data
- **Concentration inequalities** let us bound the probability of a given \bullet estimator being at least ϵ from the estimated quantity
- quantity

• An estimator is a random variable representing a procedure for estimating

• An estimator is **consistent** if it **converges in probability** to the estimated

Confidence intervals

- We would like to be able to claim \mathbf{P}_{i} $\delta, \epsilon > 0$
- This tells us that $\mathbb{E}[\bar{X}] \in \{\bar{X} \epsilon, \bar{X} + \epsilon\}$ with a large probability, 1δ
- Confidence level: δ , width of interval: ϵ

• We want to obtain a confidence interval around our estimate - we want the difference from the expected value to be small, and be consistently small.

$$\Pr\left(\left\|\bar{X}-\mu\right\|<\epsilon\right)>1-\delta$$
 for some

Hoeffding's Inequality

Theorem: Hoeffding's Inequality

Suppose that X_1, \ldots, X_n are distributed i.i.d, where X_1 are X_1 are X_1 are X_1 are X_1 .

$$\Pr\left(\left|\bar{X} - \mathbb{E}[\bar{X}]\right| \ge \epsilon\right) \le 2\exp\left(\left|\bar{X} - \mathbb{E}[\bar{X}]\right| \le (b-a)\sqrt{2}\right)$$

Equivalently,
$$\Pr\left(\left|\bar{X} - \mathbb{E}[\bar{X}]\right| \le (b-a)\sqrt{2}\right)$$

with
$$a \le X_i \le b$$
.
 $\left(\frac{2n\epsilon^2}{(b-a)^2}\right)$.
 $\left(\frac{\ln(2/\delta)}{2n}\right) \ge 1 - \delta$.

Chebyshev's Inequality

Theorem: Chebyshev's Inequality

Suppose that X_1, \ldots, X_n are distributed i.i.d. with variance σ^2 . Then for any $\epsilon > 0$,

$$\Pr\left(\left|\bar{X} - \mathbb{E}[\bar{X}]\right| \ge \epsilon\right) \le \frac{\sigma}{n\epsilon}$$

Equivalently,
$$\Pr\left(\left|\bar{X} - \mathbb{E}[\bar{X}]\right| \le \sqrt{\frac{\sigma^2}{\delta n}}\right) \ge \frac{1}{\delta n}$$

-2

 $1 - \delta$

When to Use Chebyshev, When to Use Hoeffding?

• Popoviciu's inequality: If $a \leq X_i \leq b$,

* whenever
$$\sqrt{\frac{\ln(2/\delta)}{2}} < \frac{1}{2\sqrt{\delta}} \Leftarrow$$

Chebyshev's inequality can be applied even for unbounded variables \bullet

then
$$\operatorname{Var}[X_i] \le \frac{1}{4}(b-a)^2$$

bound*, but it can only be used on **bounded**

$\Rightarrow \delta < \sim 0.232$

Consistency

Definition: A sequence of random variables X_n converges in probability to a random variable X (written $X_n \xrightarrow{p} X$) if for all $\epsilon > 0$, lim $Pr(|X_n|)$

Definition: An estimator \hat{X} for a quantity X is **consistent** if $\hat{X} \xrightarrow{p} X$.

 $n \rightarrow \infty$

$$|-X| > \epsilon) = 0.$$

Convergence Rate via Chebyshev

The **convergence rate** indicates how quickly the error in an estimator decays as the number of samples grows.

Example: Estimating mean of a distribution

• Recall that **Chebyshev's inequality** guarantees

$$\Pr\left(\left|\bar{X} - \mathbb{E}[\bar{X}]\right| \le \sqrt{\frac{\sigma^2}{\delta n}}\right) \ge 1 - \delta$$

• Convergence rate is thus $O\left(1/\sqrt{n}\right)$

ion using
$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Sample Complexity

Definition:

The sample complexity of an estimator is the number of samples required to guarantee an expected error of at most ϵ with probability $1 - \delta$, for given δ and ϵ .

Chebyshev gives

$$\epsilon = \sqrt{\frac{\sigma^2}{\delta n}}$$
$$\iff \sqrt{n} = \frac{\sigma}{\epsilon\sqrt{\delta}}$$
$$\iff n = \frac{\sigma^2}{\epsilon^2 \delta}$$

Sample Complexity

Definition:

of at most ϵ with probability $1 - \delta$, for given δ and ϵ .

For $\delta = 0.05$, **Chebyshev** gives

$$\epsilon = \sqrt{\frac{\sigma^2}{\delta n}} = \frac{1}{\sqrt{0.05}} \frac{\sigma}{\sqrt{n}}$$
$$\iff \epsilon = 4.47 \frac{\sigma}{\sqrt{n}}$$
$$\iff \sqrt{n} = 4.47 \frac{\sigma}{\epsilon}$$
$$\iff n = 19.98 \frac{\sigma^2}{\epsilon^2}$$

The sample complexity of an estimator is the number of samples required to guarantee an expected error

Sample Complexity

Definition:

of at most ϵ with probability $1 - \delta$, for given δ and ϵ .

For $\delta = 0.05$, **Chebyshev** gives

$$\epsilon = \sqrt{\frac{\sigma^2}{\delta n}} = \frac{1}{\sqrt{0.05}} \frac{\sigma}{\sqrt{n}}$$
$$\iff \epsilon = 4.47 \frac{\sigma}{\sqrt{n}}$$
$$\iff \sqrt{n} = 4.47 \frac{\sigma}{\epsilon}$$
$$\iff n = 19.98 \frac{\sigma^2}{\epsilon^2}$$

The sample complexity of an estimator is the number of samples required to guarantee an expected error

With Gaussian assumption and $\delta = 0.05$,

$$\epsilon = 1.96 \frac{\sigma}{\sqrt{n}}$$

$$\iff \sqrt{n} = 1.96 \frac{\sigma}{\epsilon}$$

$$\iff n = 3.84 \frac{\sigma^2}{\epsilon^2}$$

How good is an estimator?

- Bias: whether an estimator is correct in expectation
- Consistency: whether an estimator is correct in the limit of infinite data
- Convergence rate: how fast the estimator approaches its own mean
 - For an unbiased estimator, this is also how fast its error bounds shrink
- We don't necessarily care about an estimator's being unbiased.
 - Often, what we care about is our estimator's accuracy in expectation

Mean-Squared Error

- We don't necessarily care about an estimator's being unbiased.
 - Often, what we care about is our estimator's accuracy in expectation lacksquare

Definition: Mean squared error of an estimator \hat{X} of a quantity X:

 $MSE(\hat{X}) = \mathbb{E}\left[(\hat{X} - \mathbb{E}[X])^2\right]$

Bias-Variance Decomposition

- - $MSE(\hat{X}) = \mathbb{E}[(\hat{X} \mathbb{E}[X])^2] = \mathbb{E}[(\hat{X} \mu)^2]$ $= \mathbb{E}[(\hat{X} - \mathbb{E}[\hat{X}] + \mathbb{E}[\hat{X}] - \mu)^2]$ $-\mathbb{E}[\hat{X}] + \mathbb{E}[\hat{X}] = 0$ $= \mathbb{E}[(\hat{X} - \mathbb{E}[\hat{X}]) + b)^2]$ $b = \text{Bias}(\hat{X}) = \mathbb{E}[\hat{X}] - \mu$ $= \mathbb{E}[(\hat{X} - \mathbb{E}[\hat{X}])^{2} + 2b(\hat{X} - \mathbb{E}[\hat{X}]) + b^{2}]$ $= \mathbb{E}[(\hat{X} - \mathbb{E}[\hat{X}])^2] + \mathbb{E}[2b(\hat{X} - \mathbb{E}[\hat{X}])] + \mathbb{E}[b^2]$ linearity of \mathbb{E} $= \mathbb{E}[(\hat{X} - \mathbb{E}[\hat{X}])^2] + 2b\mathbb{E}[(\hat{X} - \mathbb{E}[\hat{X}])] + b^2$ constants come out of \mathbb{E} $= \operatorname{Var}[\hat{X}] + 2b\mathbb{E}[(\hat{X} - \mathbb{E}[\hat{X}])] + b^2$ def. variance $= \operatorname{Var}[\hat{X}] + 2b(\mathbb{E}[\hat{X}] - \mathbb{E}[\hat{X}]) + b^2$ linearity of \mathbb{E}

 - = Var $[\hat{X}] + b^2$
 - $= \operatorname{Var}[\hat{X}] + \operatorname{Bias}(\hat{X})^2$

Sometimes a biased estimator can be closer to the estimated quantity than an unbiased one.

Bias-Variance Tradeoff

$MSE(\hat{X}) = Var[\hat{X}] + Bias(\hat{X})^2$

- If we can decrease bias without increasing variance, error goes down
- If we can decrease variance without increasing bias, error goes down
- Question: Would we ever want to increase bias?
- YES. If we can increase (squared) bias in a way that decreases variance more, then error goes down!
 - Interpretation: Biasing the estimator toward values that are more likely to be true (based on prior information)

Downward-biased Mean Estimation **Example:** Let's estimate μ given i.i.d X_1, \ldots, X_n with $\mathbb{E}[X_i] = \mu$ using: $Y = \frac{1}{n+100} \sum_{i=1}^n X_i$ This estimator has **low variance**: $\operatorname{Var}(Y) = \operatorname{Var} \left| \frac{1}{n+100} \sum_{i=1}^{n} X_i \right|$ $= \frac{1}{n+100} \sum_{i=1}^{n} \mathbb{E}[X_i]$ $= \frac{1}{(n+100)^2} \operatorname{Var} \left| \sum_{i=1}^{n} X_i \right|$ $= \frac{1}{(n+100)^2} \sum_{i=1}^{n} \text{Var}[X_i]$ $= \frac{1}{n+100} \mu$ Bias(Y) = $\frac{n}{n+100}\mu - \mu = \frac{-100}{n+100}\mu$ $=\frac{n}{(n+100)^2}\sigma^2$

This estimator is **biased**:

Estimating µ Near 0

Example: Suppose that $\sigma = 1$, n = 10, and $\mu = 0.1$

 $\operatorname{Bias}(\bar{X}) = 0$

$$MSE(\bar{X}) = Var(\bar{X}) + Bias(\bar{X})^{2}$$
$$= Var(\bar{X}) \quad Var(\bar{X}) = \frac{\sigma^{2}}{n}$$
$$= \frac{1}{10}$$

 $MSE(Y) = Var(Y) + Bias(Y)^2$

$$= \frac{n}{(n+100)^2} \sigma^2 + \left(\frac{100}{n+100}\mu\right)^2$$
$$= \frac{10}{110^2} + \left(\frac{100}{110}0.1\right)^2$$
$$\approx 9 \times 10^{-4}$$

Estimating µ

 $\operatorname{Bias}(\bar{X}) = 0$ $MSE(\bar{X}) = Var(\bar{X}) + Bias(\bar{X})^2$ = Var(\bar{X}) Var(\bar{X}) = $\frac{\sigma^2}{n}$ $= \frac{10}{10}$

Example: Suppose that $\sigma = 1$, n = 10, and $\mu = 5$

 $MSE(Y) = Var(Y) + Bias(Y)^2$

$$= \frac{n}{(n+100)^2} \sigma^2 + \left(\frac{100}{n+100}\mu\right)^2$$
$$= \frac{10}{110^2} + \left(\frac{100}{110}5\right)^2$$
$$\approx 20.7$$

