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Recap

• The variance  of a random variable  is its expected squared 
distance from the mean 

• An estimator is a random variable representing a procedure for estimating 
the value of an unobserved quantity based on observed data 

• Concentration inequalities let us bound the probability of a given 
estimator being at least  from the estimated quantity 

• An estimator is consistent if it converges in probability to the estimated 
quantity

Var[X] X

ϵ



Confidence intervals
• We want to obtain a confidence interval around our estimate - we want the 

difference from the expected value to be small, and be consistently small. 

• We would like to be able to claim   for some 

 

• This tells us that  with a large probability,  

• Confidence level: , width of interval: 

Pr ( X̄ − μ < ϵ) > 1 − δ

δ, ϵ > 0

𝔼[X̄] ∈ {X̄ − ϵ, X̄ + ϵ} 1 − δ

δ ϵ





Hoeffding's Inequality
Theorem: Hoeffding's Inequality 

Suppose that  are distributed i.i.d, with . 
Then for any  , 

. 

Equivalently, .

X1, …, Xn a ≤ Xi ≤ b
ϵ > 0

Pr ( X̄ − 𝔼[X̄] ≥ ϵ) ≤ 2 exp (−
2nϵ2

(b − a)2 )
Pr ( X̄ − 𝔼[X̄] ≤ (b − a)

ln(2/δ)
2n ) ≥ 1 − δ



Chebyshev's Inequality
Theorem: Chebyshev's Inequality 

Suppose that  are distributed i.i.d. with variance .  
Then for any , 

. 

Equivalently, .

X1, …, Xn σ2

ϵ > 0

Pr ( X̄ − 𝔼[X̄] ≥ ϵ) ≤
σ2

nϵ2

Pr X̄ − 𝔼[X̄] ≤
σ2

δn
≥ 1 − δ



When to Use Chebyshev, 
When to Use Hoeffding?

• Popoviciu's inequality: If , then  

• Hoeffding's inequality gives ; 

Chebyshev's inequality gives  

• Hoeffding's inequality gives a tighter bound*, but it can only be used on bounded 
random variables 

✴
whenever  

• Chebyshev's inequality can be applied even for unbounded variables

a ≤ Xi ≤ b Var[Xi] ≤
1
4

(b − a)2

ϵ = (b − a)
ln(2/δ)

2n
=

ln(2/δ)
2

(b − a)
1
n

ϵ =
σ2

δn
≤

(b − a)2

4δn
=

1

2 δ
(b − a)

1
n

ln(2/δ)
2

<
1

2 δ
⟺ δ < ∼ 0.232



Consistency

 

Definition: A sequence of random variables  converges in probability 
to a random variable  (written ) if for all , 

.

Xn
X Xn

p
→ X ϵ > 0

lim
n→∞

Pr( |Xn − X | > ϵ) = 0

Definition: An estimator  for a quantity  is consistent if .X̂ X X̂
p

→ X



Convergence Rate via Chebyshev
The convergence rate indicates how quickly the error in an estimator decays as the 
number of samples grows. 

Example: Estimating mean of a distribution using  

• Recall that Chebyshev's inequality guarantees 

     

• Convergence rate is thus 

X̄ =
1
n

n

∑
i=1

Xi

Pr X̄ − 𝔼[X̄] ≤
σ2

δn
≥ 1 − δ

O (1/ n)



Sample Complexity

Chebyshev gives 

  

 

ϵ =
σ2

δn

⟺ n =
σ

ϵ δ

⟺ n =
σ2

ϵ2δ

Definition: 
The sample complexity of an estimator is the number of samples required to guarantee an expected error 
of at most  with probability , for given  and . ϵ 1 − δ δ ϵ



Sample Complexity

For , Chebyshev gives 

  

 

 

δ = 0.05

ϵ =
σ2

δn
=

1

0.05

σ

n

⟺ ϵ = 4.47
σ

n

⟺ n = 4.47
σ
ϵ

⟺ n = 19.98
σ2

ϵ2

Definition: 
The sample complexity of an estimator is the number of samples required to guarantee an expected error 
of at most  with probability , for given  and . ϵ 1 − δ δ ϵ



Sample Complexity

For , Chebyshev gives 

  

 

 

δ = 0.05

ϵ =
σ2

δn
=

1

0.05

σ

n

⟺ ϵ = 4.47
σ

n

⟺ n = 4.47
σ
ϵ

⟺ n = 19.98
σ2

ϵ2

With Gaussian assumption and  

      

 

δ = 0.05,

ϵ = 1.96
σ

n

⟺ n = 1.96
σ
ϵ

⟺ n = 3.84
σ2

ϵ2

Definition: 
The sample complexity of an estimator is the number of samples required to guarantee an expected error 
of at most  with probability , for given  and . ϵ 1 − δ δ ϵ



How good is an estimator?
• Bias: whether an estimator is correct in expectation 

• Consistency: whether an estimator is correct in the limit of infinite data 

• Convergence rate: how fast the estimator approaches its own mean 
• For an unbiased estimator, this is also how fast its error bounds shrink 

• We don't necessarily care about an estimator's being unbiased. 
• Often, what we care about is our estimator's accuracy in expectation



Mean-Squared Error
• We don't necessarily care about an estimator's being unbiased. 

• Often, what we care about is our estimator's accuracy in expectation 

Definition: Mean squared error of an estimator  of a quantity : 

 

X̂ X

MSE(X̂) = 𝔼 [(X̂ − 𝔼[X])2]
different!



Bias-Variance Decomposition
 

 

 

 

 

 

 

 

 

                                        

MSE(X̂) = 𝔼[(X̂ − 𝔼[X])2] = 𝔼[(X̂ − μ)2]
= 𝔼[(X̂−𝔼[X̂] + 𝔼[X̂]−μ)2]
= 𝔼[((X̂ − 𝔼[X̂]) + b)2]
= 𝔼[(X̂ − 𝔼[X̂])2 + 2b(X̂ − 𝔼[X̂]) + b2]
= 𝔼[(X̂ − 𝔼[X̂])2] + 𝔼[2b(X̂ − 𝔼[X̂])] + 𝔼[b2]
= 𝔼[(X̂ − 𝔼[X̂])2] + 2b𝔼[(X̂ − 𝔼[X̂])] + b2

= Var[X̂] + 2b𝔼[(X̂ − 𝔼[X̂])] + b2

= Var[X̂] + 2b(𝔼[X̂] − 𝔼[X̂]) + b2

= Var[X̂] + b2

= Var[X̂] + Bias(X̂)2 ∎

−𝔼[X̂] + 𝔼[X̂] = 0

b = Bias(X̂) = 𝔼[X̂] − μ

μ = 𝔼[X]

Sometimes a biased estimator can be closer to the estimated quantity than an unbiased one.

linearity of 𝔼

constants come out of 𝔼

linearity of 𝔼
def. variance



Bias-Variance Tradeoff

 

• If we can decrease bias without increasing variance, error goes down 

• If we can decrease variance without increasing bias, error goes down 

• Question: Would we ever want to increase bias? 

• YES.  If we can increase (squared) bias in a way that decreases variance 
more, then error goes down! 

• Interpretation: Biasing the estimator toward values that are more likely 
to be true (based on prior information)

 MSE(X̂) = Var[X̂] + Bias(X̂)2



Downward-biased Mean Estimation
Example: Let's estimate  given i.i.d  with  using:  μ X1, …, Xn 𝔼[Xi] = μ Y =

1
n+100

n

∑
i=1

Xi

This estimator is biased: 

 

 

 

𝔼[Y] = 𝔼 [ 1
n + 100

n

∑
i=1

Xi]
=

1
n + 100

n

∑
i=1

𝔼[Xi]

=
n

n + 100
μ

Bias(Y) =
n

n + 100
μ − μ =

−100
n + 100

μ

This estimator has low variance: 

 

 

 

Var(Y) = Var [ 1
n + 100

n

∑
i=1

Xi]
=

1
(n + 100)2

Var [
n

∑
i=1

Xi]
=

1
(n + 100)2

n

∑
i=1

Var[Xi]

=
n

(n + 100)2
σ2



  

 

MSE(X̄) = Var(X̄) + Bias(X̄)2

= Var(X̄)

=
1

10

Estimating  Near 0μ
Example: Suppose that , , and σ = 1 n = 10 μ = 0.1

Bias(X̄) = 0

Var(X̄) =
σ2

n

  

 

 

MSE(Y) = Var(Y) + Bias(Y)2

=
n

(n + 100)2
σ2 + ( 100

n + 100
μ)

2

=
10

1102
+ ( 100

110
0.1)

2

≈ 9 × 10−4



  

 

MSE(X̄) = Var(X̄) + Bias(X̄)2

= Var(X̄)

=
1

10

Estimating μ
Example: Suppose that , , and σ = 1 n = 10 μ = 5

Bias(X̄) = 0

Var(X̄) =
σ2

n

  

 

 

MSE(Y) = Var(Y) + Bias(Y)2

=
n

(n + 100)2
σ2 + ( 100

n + 100
μ)

2

=
10

1102
+ ( 100

110
5)

2

≈ 20.7




