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1. Prediction

2. Modeling Problem

3. MAP and MLE




Prediction

 Previously: Given an i.i.d. dataset X, ..., X, , we
wanted to estimate some property of the distribution that

generated them (usually ()

* (Concentration inequalities (Hoeffding, Chebyshev) let us

bound the probabillity of our estimate X being within e
of the true value:

Pr(|X—ul<e)>(-95

Now suppose that we want to predict the value of the next

datapoint X, , ; based on our estimate from X1, ..., X, .

Questions:

. What number

should we predict
to minimize MSE"?

. What Is the

probabillity that we

will be within € of
the true value?




Prediction:
Mean and Variance Are Not Enough

If we know 02, we can bound the

probability of X, . ; being within € of u

What if we want to know the
probability of X, . ; lying in some other

range |a, b]?

It we know the full distribution, then we
can compute F(b) — F(a)

But many very different distributions a b
share the same i and o



The Modeling Problem

* For prediction, we will want to find a model

e A function f that approximates the distribution f that generates our data

* A good modeling procedure should:
1. Generalize: Model should perform well on unseen data

2. Incorporate prior knowledge/assumptions: E.g., we should be able to take
advantage of knowing that the true distribution is lbounded, etc.

3. Scale: Compute a solution in a reasonable amount of time for large sets of training data



Parametric Models Questions.

1. What is a good
model?

« Our goal is to select f € F based on adataset D = {x;}._ 2. How should we
choose a model

» The data is drawn from some unknown "true" distribution f* from F 7

« F is afamily of possible distributions (the hypothesis space or
function class)

* [t Is often convenient to consider parametric hypothesis spaces

o E.g., univariate Gaussians & = { N (u,06*) | u € R, 0 € R™}

e Picking f IS then equivalent to picking a particular set of
parameters




Viaximum A Posteriorl Estimation

Maximum a Posteriori estimate:
Choose the model that is most probable given the data

fmap = argmax p(f | 9)
fes#

Question: How are we supposed to compute the probability of a model?

[ (@) “ Evidence



| Ikelihood

Posterior

\ e
T P2 f
£ M vidence

When & = {x, ..., X, } are assumed to be distributed i.i.d.:

PP | ) =pli,xss %, | ) = | | pOs 1)
=1

But p(x; | f) = f(x;), so the likelihood is
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=1
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» The prior p(f) allows us to express our beliefs about which models are more probable

0.

 No model is more probable than another: uniform prior

e Preference for models with small-magnitude means:

* Preference for "simple” models: smaller coefficients more probable

p(p)

1

H

Evidence

* The key point is that these are reasons to prefer given models that don't depend on the data (i.e.,

they are "prior" to the dataset).



Model Evidence and Constants

Pos’terio\rl l /

@ 1]
p(f | @) B < Evidence
The model evidence (or marginal likelihood) p(&)) is the expected probability of the dataset,
marginalizing over all models:

expectation with

respect to p(f) |
/ > T p(D | f)p(f) fordiscrete f 00 :j 0 y) dy

D) =E |p(D = !
P2) [p( lf)] fgp(@ | H)p(f)df for continuous f pex:y) = pLx 1 y)p(y)

Prior

Note that p(&J) is constant with respect to the model f

),
So fmap = argmax p(f | &) = arg maxw = argmax p(<J | /p(f)
feF fex  p(D) feF




Maximum Likellhood Estimation

e Sometimes we have no reason to prefer one model over another!

» Then p(f) = k for some constant k

» Then p(f) is also constant with respect to f, and we have

|
Smap = argmax p(D | f)p(f) = argmaxp(D | f)k = argmaxp(D | f)

fesF fes fes

MAP estimates with a uniform prior are also called maximum likelihood estimates

JMLE = argmax p(2 | f)
fe&F



Example: Poisson Data

Example: Suppose dataset & = {2,5,9,5,4,8} is drawn i.i.d. from an unknown Poisson distribution, with

parameter wy,.

We will maximize

W\ E = arg max p(@ ‘ W) 1. Log is an increasing function, so
weE(0,00) arg max x = arg max In x
x>0 x>0

— dig WIEI%&}(;) Inp(< | w) p(10 coin tosses ) = 2719

< ?
Why: 2 p(1000 coin tosses ) = 27100

n

= arg max Inp(x; | w
gWE(O,oo)izzl p( l‘ ) 3. In(laxb)=Ina+1nb

Inserting pmf for Poisson distribution, taking derivative, and solving for O yields:

1 n
- — Z x; = 5.5 for dataset &

n
=1

WML




Parameter estimation

; — n
1. Given dataset & = {x;}_,

2. Pick a distribution type for x

A. E.g.ifx € R, we might assume Gaussian, w = (i, o),

3. E.gx; = {0,1}, learn Bernoulli, p(x |w) = w(1 — W)=

3. ldentify the “best” parameter w

- one that makes the observed data more likely: max p(<2 | w)
WEF



MAP vs MLE for Infinite Data

Example: Suppose dataset & = {2,5,9,5,4,8} is drawn i.i.d. from an unknown Poisson distribution, with parameter w,.

Suppose instead we want to use a Gamma prior for w,,

with parameters k = 3 and 6 = 1:

wk=le—o

O (k)

p(w) =

Then MAP estimate is wyjap = arg max p(< | w, k, )p(w | k, 6)
we(0,00)

=arg max Inp(D |w,k 0)+Inp(w |k, 6)

we(0,00)

k—1+)" x
= =1 — 5or dataset @

1
n+e

Question: \What happens as the size of the dataset grows to infinity?



Summary

» We are usually interested in predicting the value of unseen data X, . ; based on training data

D= {X{5...5X,}
e Just estimating mean, variance etc. are not good enough
e |nstead, we will want to choose a model f from a hypothesis space F#
» Where the data are generated according to some "true" model f*

« F is often parametric: its members identified by parameter values

* [wo approaches to parameter estimation (in this lecture):

fmap = argmax p(f | &) = argmax p(D | f)p(f)

fesF fes

SMLE = argmax p(D | f)p(f)

fesF




