
CMPUT 267: Basics of Machine Learning

Formalizing Parameter Estimation 
 

Textbook §5.1-5.2 



Outline

1. Prediction 

2. Modeling Problem 

3. MAP and MLE 



Prediction

• Previously: Given an i.i.d. dataset , we 
wanted to estimate some property of the distribution that 
generated them (usually ) 

• Concentration inequalities (Hoeffding, Chebyshev) let us 
bound the probability of our estimate  being within  
of the true value: 

 

Now suppose that we want to predict the value of the next 
datapoint  based on our estimate from .

X1, …, Xn

μ

X̄ ±ϵ

Pr ( | X̄ − μ | ≤ ϵ) ≥ (1 − δ)

Xn+1 X1, …, Xn

Questions: 

1. What number 
should we predict 
to minimize MSE? 

2. What is the 
probability that we 
will be within  of 
the true value?

ϵ



Prediction:  
Mean and Variance Are Not Enough

• If we know , we can bound the 
probability of  being within  of  

• What if we want to know the 
probability of  lying in some other 
range ? 

• If we know the full distribution, then we 
can compute  

• But many very different distributions 
share the same   and 

σ2

Xn+1 ϵ μ
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F(b) − F(a)

μ σ
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The Modeling Problem

• For prediction, we will want to find a model 

•  A function  that approximates the distribution  that generates our data 

• A good modeling procedure should: 

1. Generalize: Model should perform well on unseen data 

2. Incorporate prior knowledge/assumptions: E.g., we should be able to take 
advantage of knowing that the true distribution is bounded, etc. 

3. Scale: Compute a solution in a reasonable amount of time for large sets of training data

̂f f



Parametric Models

• Our goal is to select  based on a dataset  

• The data is drawn from some unknown "true" distribution  

•  is a family of possible distributions (the hypothesis space or 
function class) 

• It is often convenient to consider parametric hypothesis spaces 

• E.g., univariate Gaussians  

• Picking  is then equivalent to picking a particular set of 
parameters

̂f ∈ ℱ 𝒟 = {xi}n
i=1

f*
ℱ

ℱ = {𝒩(μ, σ*) ∣ μ ∈ ℝ, σ ∈ ℝ+}
̂f

Questions: 

1. What is a good 
model? 

2. How should we 
choose a model 
from ?ℱ



Maximum A Posteriori Estimation
Maximum a Posteriori estimate:  
Choose the model that is most probable given the data 

  

Question: How are we supposed to compute the probability of a model? 

fMAP = arg max
f∈ℱ

p( f ∣ 𝒟)

p( f ∣ 𝒟) = p(𝒟 ∣ f )p( f )
p(𝒟)

Posterior

Likelihood
Prior

Evidence



Likelihood

When  are assumed to be distributed i.i.d.: 

  

But , so the likelihood is 

 

𝒟 = {x1, …, xn}

p(𝒟 ∣ f ) = p(x1, x2, …, xn ∣ f ) =
n

∏
i=1

p(xi ∣ f )

p(xi ∣ f ) = f(xi)

p(𝒟 ∣ f ) =
n

∏
i=1

f(xi)

p( f ∣ 𝒟) = p(𝒟 ∣ f )p( f )
p(𝒟)

Posterior
Likelihood

Prior

Evidence



Prior

• The prior  allows us to express our beliefs about which models are more probable 

• E.g.: 

• No model is more probable than another: uniform prior 

• Preference for models with small-magnitude means:  

  

• Preference for "simple" models: smaller coefficients more probable 

• The key point is that these are reasons to prefer given models that don't depend on the data (i.e., 
they are "prior" to the dataset).

p( f )

p(μ) ∝ 1
μ

p( f ∣ 𝒟) = p(𝒟 ∣ f )p( f )
p(𝒟)

Posterior
Likelihood

Prior

Evidence



Model Evidence and Constants

The model evidence (or marginal likelihood)  is the expected probability of the dataset, 
marginalizing over all models: 

  

Note that  is constant with respect to the model  

So 

p(𝒟)

p(𝒟) = 𝔼 [p(𝒟 ∣ f )] =
∑f∈ℱ p(𝒟 ∣ f )p( f ) for discrete f

∫ℱ p(𝒟 ∣ f )p( f ) df for continuous f

p(𝒟) f

fMAP = arg max
f∈ℱ

p( f ∣ 𝒟) = arg max
f∈ℱ

p(𝒟 ∣ f )p( f )
p(𝒟) = arg max

f∈ℱ
p(𝒟 ∣ f )p( f )

p( f ∣ 𝒟) = p(𝒟 ∣ f )p( f )
p(𝒟)

Posterior
Likelihood

Prior

Evidence

p(x) = ∫ℱ
p(x, y) dy

p(x, y) = p(x ∣ y)p(y)

expectation with

respect to p( f )



Maximum Likelihood Estimation

• Sometimes we have no reason to prefer one model over another! 

• Then  for some constant  

• Then  is also constant with respect to , and we have 

     

MAP estimates with a uniform prior are also called maximum likelihood estimates 

 

p( f ) = k k

p( f ) f

fMAP = arg max
f∈ℱ

p(𝒟 ∣ f )p( f ) = arg max
f∈ℱ

p(𝒟 ∣ f )k = arg max
f∈ℱ

p(𝒟 ∣ f )

fMLE = arg max
f∈ℱ

p(𝒟 ∣ f )

Likelihood



Example: Poisson Data
Example: Suppose dataset  is drawn i.i.d. from an unknown Poisson distribution, with 
parameter . 

We will maximize  

 

  

  

Inserting pmf for Poisson distribution, taking derivative, and solving for 0 yields: 

 

𝒟 = {2,5,9,5,4,8}
w0

wMLE = arg max
w∈(0,∞)

p(𝒟 ∣ w)

= arg max
w∈(0,∞)

ln p(𝒟 ∣ w)

= arg max
w∈(0,∞)

n

∑
i=1

ln p(xi ∣ w)

wMLE = 1
n

n

∑
i=1

xi = 5.5 for dataset 𝒟

Why?

1. Log is an increasing function, so




2. 


3.

arg max
x>0

x = arg max
x>0

ln x

p(10 coin tosses ) = 2−10

p(1000 coin tosses ) = 2−1000
…

ln(a × b) = ln a + ln b



Parameter Estimation
1. Given dataset  

2. Pick a distribution type for x 

A. E.g. if , we might assume Gaussian, ,  

                       

    B.  E.g , learn Bernoulli,  

3. Identify the “best” parameter  

       - one that makes the observed data more likely: 

𝒟 = {xi}n
i=1

x ∈ ℝ w = (μ, σ)

p(x |w) = 1
2πσ2

exp( −(x − μ)2

2σ2 )

xi = {0,1} p(x |w) = wx(1 − w)(1−x)

w

max
w∈ℱ

p(𝒟 |w)



MAP vs MLE for Infinite Data
Example: Suppose dataset  is drawn i.i.d. from an unknown Poisson distribution, with parameter . 

Suppose instead we want to use a Gamma prior for   
with parameters  and : 

  

Then MAP estimate is   

           

  

Question: What happens as the size of the dataset grows to infinity?

𝒟 = {2,5,9,5,4,8} w0

w0
k = 3 θ = 1

p(w) = wk−1e− w
θ

θkΓ(k)
wMAP = arg max

w∈(0,∞)
p(𝒟 ∣ w, k, θ)p(w ∣ k, θ)

= arg max
w∈(0,∞)

ln p(𝒟 ∣ w, k, θ)+ln p(w ∣ k, θ)

=
k − 1 + ∑n

i=1 xi

n + 1
θ

= 5 for dataset 𝒟



Summary
• We are usually interested in predicting the value of unseen data  based on training data 

 

• Just estimating mean, variance etc. are not good enough 

• Instead, we will want to choose a model  from a hypothesis space  

• Where the data are generated according to some "true" model  

•  is often parametric: its members identified by parameter values 

• Two approaches to parameter estimation (in this lecture): 

 

Xn+1
𝒟 = {x1, …, xn}

̂f ℱ
f*

ℱ

fMAP = arg max
f∈ℱ

p( f ∣ 𝒟) = arg max
f∈ℱ

p(𝒟 ∣ f )p( f )

fMLE = arg max
f∈ℱ

p(𝒟 ∣ f )p( f )


