CMPUT 267: Basics of Machine Learning Formalizing Parameter Estimation

Textbook §5.1-5.2

Outline

- 1. Prediction
- 2. Modeling Problem
- 3. MAP and MLE

Prediction

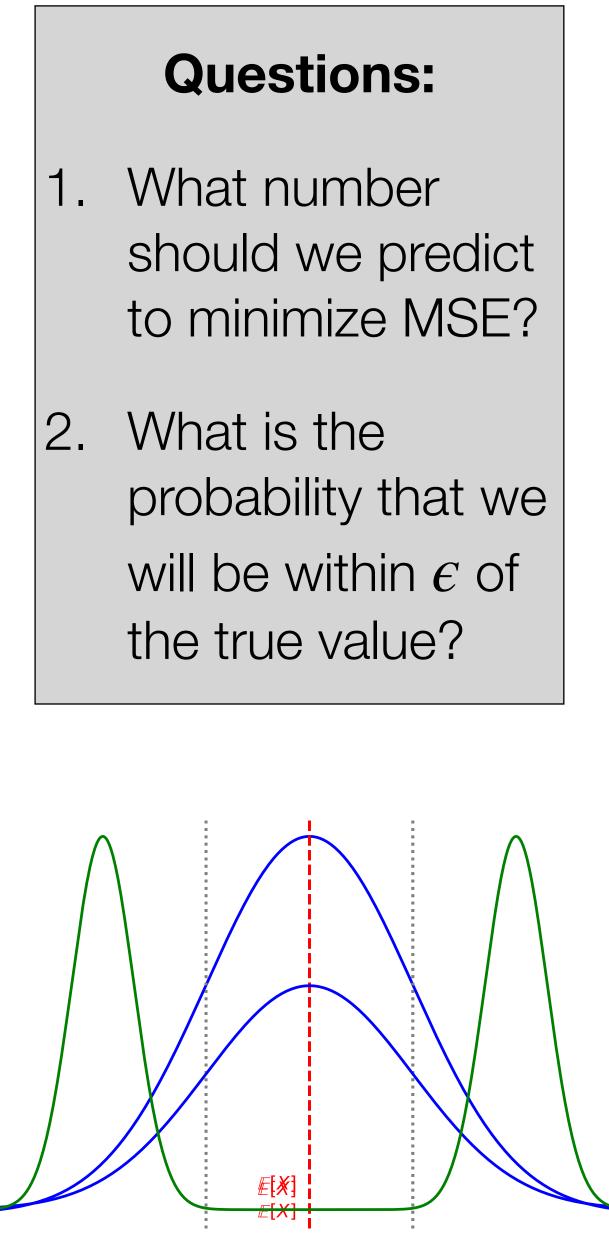
- **Previously:** Given an i.i.d. dataset X_1, \ldots, X_n , we wanted to estimate some property of the distribution that generated them (usually μ)
- Concentration inequalities (Hoeffding, Chebyshev) let us bound the probability of our estimate X being within $\pm\epsilon$ of the true value:

$$\Pr\left(\left|\bar{X}-\mu\right| \leq \epsilon\right) \geq$$

Now suppose that we want to **predict** the value of the **next** datapoint X_{n+1} based on our estimate from X_1, \ldots, X_n .

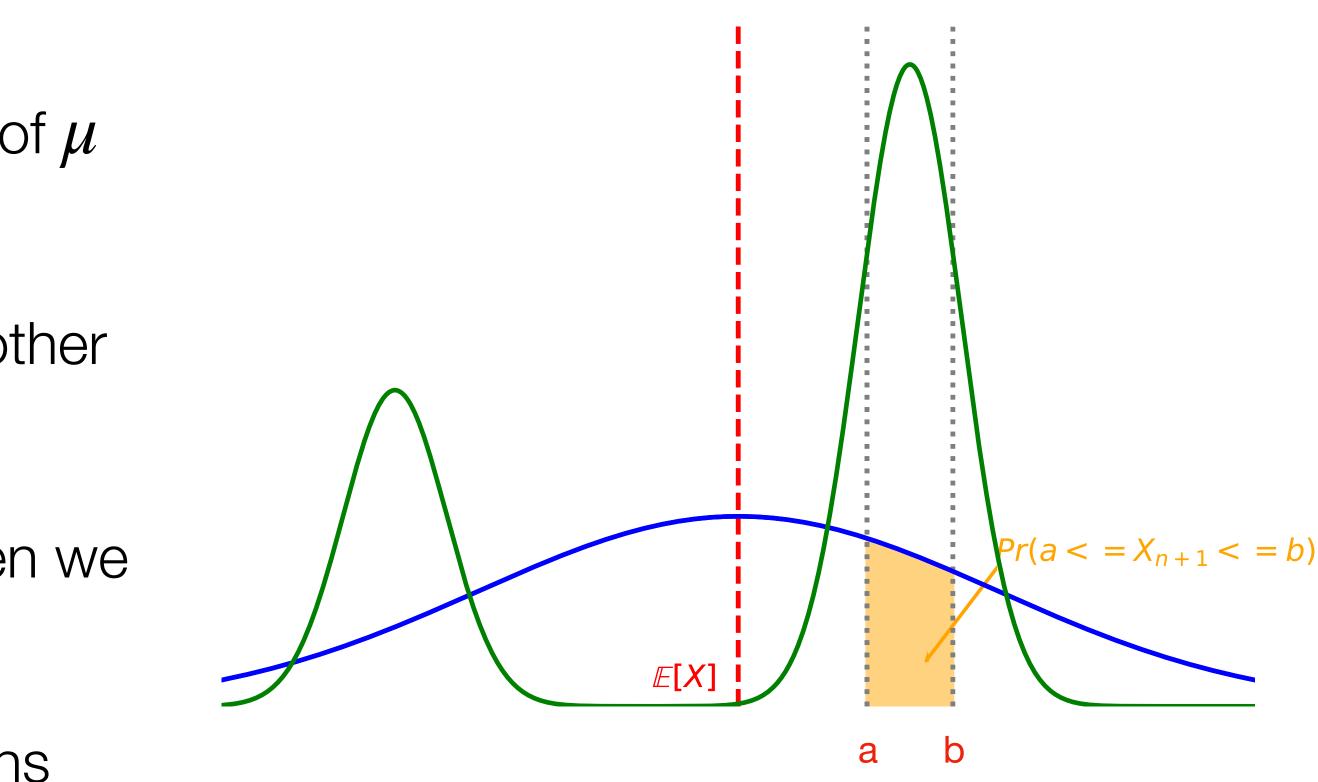
$\geq (1 - \delta)$

- What number
- What is the the true value?



Prediction: Mean and Variance Are Not Enough

- If we know σ^2 , we can bound the probability of X_{n+1} being within ϵ of μ
- What if we want to know the \bullet probability of X_{n+1} lying in some other range [a, b]?
- If we know the full distribution, then we can compute F(b) - F(a)
- But many very different distributions share the same μ and σ



The Modeling Problem

- For prediction, we will want to find a **model**
 - A function \hat{f} that approximates the distribution f that generates our data
- A good modeling procedure should:
 - Generalize: Model should perform well on unseen data 1.
 - 2. advantage of knowing that the true distribution is bounded, etc.

Incorporate prior knowledge/assumptions: E.g., we should be able to take

3. Scale: Compute a solution in a reasonable amount of time for large sets of training data

Parametric Models

- Our goal is to select $\hat{f} \in \mathscr{F}$ based on a dataset $\mathscr{D} = \{x_i\}_{i=1}^n$
 - The data is drawn from some unknown "true" distribution f^*
 - F is a family of possible distributions (the hypothesis space or function class)
- It is often convenient to consider parametric hypothesis spaces
 - E.g., univariate Gaussians $\mathcal{F} = \{ \mathcal{N}(\mu, \sigma^*) \mid \mu \in \mathbb{R}, \sigma \in \mathbb{R}^+ \}$
 - Picking \hat{f} is then equivalent to picking a particular set of **parameters**

Questions:

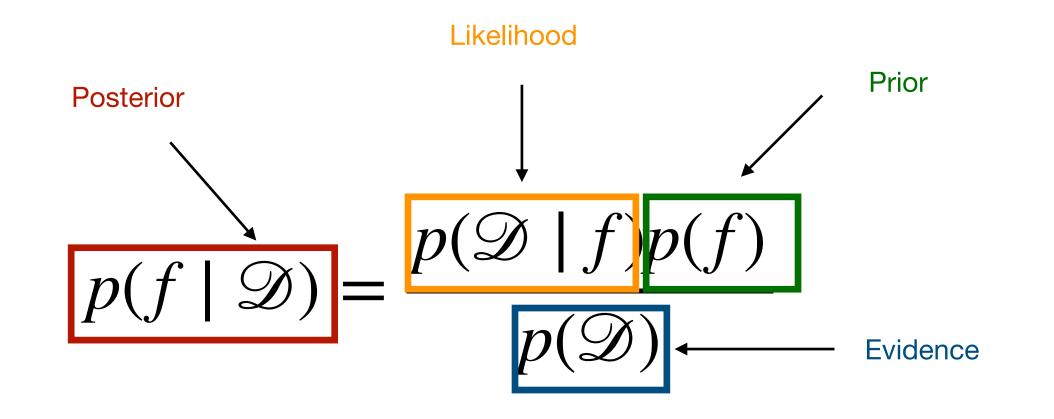
- 1. What is a **good** model?
- 2. How should we choose a model from \mathcal{F} ?

Maximum A Posteriori Estimation

Maximum a Posteriori estimate:

Choose the model that is **most probable** given the data

Question: How are we supposed to compute the probability of a model?



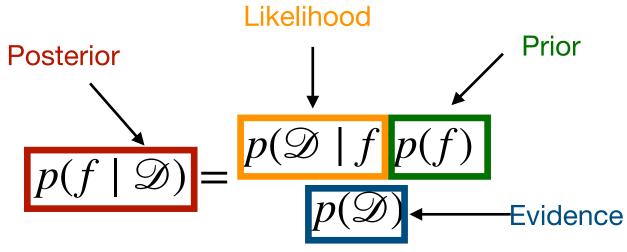
 $f_{\mathsf{MAP}} = \arg \max_{f \in \mathscr{F}} p(f \mid \mathscr{D})$

Likelihood

When $\mathcal{D} = \{x_1, \dots, x_n\}$ are assumed to be distributed i.i.d.: $p(\mathcal{D} \mid f) = p(x_1, x_2,$

But $p(x_i | f) = f(x_i)$, so the likelihood is

 $p(\mathcal{D} \mid f$



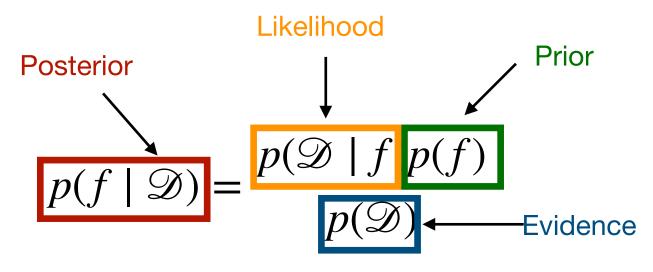
...,
$$x_n | f) = \prod_{i=1}^n p(x_i | f)$$

$$f) = \prod_{i=1}^{n} f(x_i)$$

- The prior p(f) allows us to express our beliefs about which models are more probable
- E.g.:
 - No model is more probable than another: uniform prior
 - Preference for models with small-magnitude means: lacksquare

- Preference for "simple" models: smaller coefficients more probable
- The key point is that these are reasons to prefer given models that don't depend on the data (i.e., they are "prior" to the dataset).

Prior



 $p(\mu) \propto \left| \frac{1}{\mu} \right|$

Model Evidence and Constants Likelihood $p(f \mid \mathcal{D}) = p(\mathcal{D} \mid f p(f))$

marginalizing over all models:

expectation with

$p(\mathcal{D}) = \mathbb{E}\left[p(\mathcal{D} \mid f)\right] = \begin{cases} \sum_{f \in \mathcal{F}} p(\mathcal{D} \mid f) p(f) & \text{for discrete } f \\ \int_{\mathcal{F}} p(\mathcal{D} \mid f) p(f) \, df & \text{for continuous } f \end{cases}$

Note that $p(\mathcal{D})$ is **constant** with respect to the model f

 $\operatorname{So} f_{\mathsf{MAP}} = \arg \max_{f \in \mathscr{F}} p(f \mid \mathscr{D}) = \arg \max_{f \in \mathscr{F}} \frac{p(\mathscr{D} \mid f)p(f)}{p(\mathscr{D})} = \arg \max_{f \in \mathscr{F}} p(\mathscr{D} \mid f)p(f)$

- The model evidence (or marginal likelihood) $p(\mathcal{D})$ is the expected probability of the dataset,
 - $p(x) = \int_{\mathscr{F}} p(x, y) \, dy$ $p(x, y) = p(x \mid y)p(y)$

Maximum Likelihood Estimation

- Sometimes we have no reason to prefer one model over another!
 - Then p(f) = k for some constant k
- Then p(f) is also constant with respect

 $f_{\mathsf{MAP}} = \arg \max_{f \in \mathscr{F}} p(\mathscr{D} \mid f) p(f) = \arg_{f \in \mathscr{F}} p(f) = \arg_{f \in \mathscr{F}} p(f) = \arg_{f \in \mathscr{F}} p(f) = \log_{\mathsf{MAP}} p(f) = \log_{\mathsf{MAP}}$

MAP estimates with a uniform prior are also called maximum likelihood estimates

$$f_{\mathsf{MLE}} = \arg \max_{f \in \mathscr{F}} p(\mathscr{D} \mid f)$$

t to
$$f$$
, and we have

$$\max_{f \in \mathscr{F}} p(\mathscr{D} \mid f) k = \arg\max_{f \in \mathscr{F}} p(\mathscr{D} \mid f)$$

Example: Poisson Data

Example: Suppose dataset $\mathscr{D} = \{2,5,9,5,4,8\}$ is drawn i.i.d. from an unknown Poisson distribution, with parameter w_0 .

Why?

We will maximize

 $w_{\mathsf{MLE}} = \arg \max_{w \in (0,\infty)} p(\mathcal{D} \mid w)$

 $= \arg \max_{w \in (0,\infty)} \ln p(\mathcal{D} \mid w)$

 $= \arg \max_{w \in (0,\infty)} \sum_{i=1}^{n} \ln p(x_i \mid w)$

Inserting pmf for Poisson distribution, taking derivative, and solving for 0 yields:

$$w_{\mathsf{MLE}} = \frac{1}{n} \sum_{i=1}^{n}$$

1. Log is an increasing function, so

$$arg \max_{x>0} x = arg \max_{x>0} \ln x$$

$$p(10 \text{ coin tosses }) = 2^{-10}$$
2.
$$p(1000 \text{ coin tosses }) = 2^{-1000}$$
....
3.
$$\ln(a \times b) = \ln a + \ln b$$

 $x_i = 5.5$ for dataset \mathscr{D}

Parameter Estimation

- 1. Given dataset $\mathcal{D} = \{x_i\}_{i=1}^n$
- 2. Pick a distribution type for x

A. E.g. if x

$$\in \mathbb{R}, \text{ we might assume Gaussian, } w = (\mu, \sigma),$$

$$p(x \mid w) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(\frac{-(x-\mu)^2}{2\sigma^2})$$

$$= \{0,1\}, \text{ learn Bernoulli, } p(x \mid w) = w^x(1-w)^{(1-x)}$$

B. E.g $x_i = \{0, 1\},\$

3. Identify the "best" parameter *w*

- one that makes the observed data more

e likely:
$$\max_{w \in \mathcal{F}} p(\mathcal{D} \mid w)$$

MAP vs MLE for Infinite Data

Example: Suppose dataset $\mathcal{D} = \{2, 5, 9, 5, 4, 8\}$ is drawn i.i.d. from an unknown Poisson distribution, with parameter w_0 .

Suppose instead we want to use a Gamma prior for w_0 with parameters k = 3 and $\theta = 1$:

p(w) =

Then MAP estimate is $w_{MAP} = \arg \max_{w \in (0,\infty)} p(\mathcal{D} \mid w, k, \theta) p(w \mid k, \theta)$

 $w \in (0,\infty)$ $=\frac{k-1+\sum_{i=1}^{n}}{n+\frac{1}{\theta}}$

Question: What happens as the size of the dataset grows to infinity?

$$=\frac{w^{k-1}e^{-\frac{w}{\theta}}}{\theta^k\Gamma(k)}$$

= arg max $\ln p(\mathcal{D} \mid w, k, \theta) + \ln p(w \mid k, \theta)$

$$\frac{x_i}{2} = 5$$
 for dataset \mathscr{D}

Summary

- We are usually interested in predicting the value of unseen data X_{n+1} based on training data $\mathcal{D} = \{x_1, ..., x_n\}$
- Just estimating mean, variance etc. are not good enough
- Instead, we will want to choose a model \hat{f} from a hypothesis space ${\mathscr F}$
 - Where the data are generated according to some "true" model f^*
 - \mathcal{F} is often parametric: its members identified by parameter values
- Two approaches to parameter estimation (in this lecture):

$$f_{\mathsf{MAP}} = \arg \max_{f \in \mathscr{F}} p(f \mid f_{\mathsf{MLE}})$$
$$f_{\mathsf{MLE}} = \arg \max_{f \in \mathscr{F}} p(\mathscr{D})$$

- $\mathcal{D}) = \arg \max_{f \in \mathcal{F}} p(\mathcal{D} \mid f) p(f)$
- |f)p(f)