
CMPUT 267 Basics of Machine Learning
Winter 2024

February 6, 2024

CMPUT 267 Basics of Machine Learning 1



Outline

1. Recap: Parameter Estimation

2. Examples

3. Consistency and Bias

4. Bayesian Approaches

CMPUT 267 Basics of Machine Learning 2



Parameter Estimation

1. Given dataset D = {xi}ni=1

2. Pick a distribution class (function class, hypothesis space) to model the
distribution of x

� E.g. if xi ∈ R, maybe Guassian, p(x | w) where w = (µ, σ) ∈ R2

p(x | w) = 1√
2πσ

exp

(
−(x− µ)2

2σ2

)
.

� E.g. If xi ∈ {0, 1}, Bernoulli w ∈ [0, 1] where p(x = 1 | w) = w,

p(x | w) = wx(1− w)1−x.

3. Identify best parameter w - MLE or MAP estimate
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MAP Example, Poisson data with Gamma prior
Suppose we have a dataset D = {8,4,5,9,5,2}, with each value drawn i.i.d from an
unknown Poisson distribution with parameter λ0. We have a Gamma prior over λ:

prior p(λ) =
λk−1e−λ/θ

θkΓ(k)
and likelihood p(D|λ) = λ(

∑n
i=1 xi)e−nλ∏n
i=1 xi!
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MAP Example, Poisson data with Gamma prior
Suppose we have a dataset D = {8,4,5,9,5,2}, with each value drawn i.i.d from an
unknown Poisson distribution with parameter λ0. We have a Gamma prior over λ:

prior p(λ) =
λk−1e−λ/θ

θkΓ(k)
and likelihood p(D|λ) = λ(

∑n
i=1 xi)e−nλ∏n
i=1 xi!

p(D) =
∫∞
0 p(D | λ)p(λ) dλ

=
∫∞
0

λsne−nλ∏n
i=1 xi!

· λ
k−1e−

λ
θ

θkΓ(k) dλ

= Γ(k+sn)
θkΓ(k)

∏n
i=1 xi!(n+

1
θ )

(k+sn)
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Example (cont’d)
Posterior. p(λ | D) = p(D|λ)p(λ)

p(D)

p(λ | D) =
λsne−nλ∏n

i=1 xi!
· λ

k−1e−
λ
θ

θkΓ(k)
·
θkΓ(k)

∏n
i=1 xi!

(
n+ 1

θ

)(k+sn)

Γ (k + sn)

=
λ((k+sn)−1) · e−λ(n+1/θ) ·

(
n+ 1

θ

)(k+sn)

Γ (k + sn)

=
λ((k+sn)−1) · e−λ(n+1/θ)(

1
n+ 1

θ

)(k+sn)
· Γ (k + sn)

That is, a Gamma(k′, θ′) distribution with

k′ = k + sn and θ′ =
θ

nθ + 1
=

1
n+ 1/θ
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Posterior. p(λ | D) = p(D|λ)p(λ)

p(D)

p(λ | D) =
λsne−nλ∏n

i=1 xi!
· λ

k−1e−
λ
θ

θkΓ(k)
·
θkΓ(k)

∏n
i=1 xi!

(
n+ 1

θ

)(k+sn)

Γ (k + sn)

=
λ((k+sn)−1) · e−λ(n+1/θ) ·

(
n+ 1

θ

)(k+sn)

Γ (k + sn)

=
λ((k+sn)−1) · e−λ(n+1/θ)(

1
n+ 1

θ

)(k+sn)
· Γ (k + sn)

That is, a Gamma(k′, θ′) distribution with

k′ = k + sn and θ′ =
θ

nθ + 1
=

1
n+ 1/θ

CMPUT 267 Basics of Machine Learning 8



Example (cont’d)
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Conjugate Priors

� A conjugate prior p(w) for the parameter of a data distribution p(x|w) , where
the posterior p(w|D) is of the same type as p(w).

� Gamma is a conjugate prior for the parameter of a Poisson data distribution
� Starting from prior Gamma(k, θ) and assuming a Poisson likelihood, after seeing

data D = x1, . . . , xn, the posterior is Gamma
(
k +

∑n
i=1 xi,

1
n+1/θ

)
.

� Similarly, Beta is a conjugate prior for the parameter of a Binomial data
distribution

� Starting from prior Beta(a, b) and assuming a Binomial likelihood, after seeing
data D = n1 successes and n0 failures, the posterior is Beta(a+ n1, b+ n0).
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Updated data

� What if we observe more data?

� Binomial data example

� We have estimates a′ = a+ n1, b′ + n0 for posterior Beta(a′, b′) from data D.

� Now we have additional data D ∪ xn+1, . . . , xn+10.

� Compute sn+10 = sn +
∑n+10

i=n+1 xi.

� Then ã = a′ + ñ1 and b̃ = b′ + ñ0.

� Beta(a′, b′) is like a new prior
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Parameter Estimation: Consistency and Bias
� Estimation of Poisson parameter (estimate λ∗: xi ∼ p(x|λ∗):

wMLE =
sn
n
, wMAP =

(k − 1) + sn
n+ 1/θ

, sn =
n∑

i=1

xi
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Point estimates

� MAP and MLE estimates are point estimates.

� Suppose we have a dataset D that was generated by a model:

f(· | θ∗) ∈ F = {f(· | θ) | θ ∈ R}

� A point estimate answers the question: What is the single best guess for the
parameter?

� MLE: argmaxθ p(D | θ). (mode of the likelihood function)

� MAP: argmaxθ p(θ | D). (mode of the posterior distribution)

� Estimate of θ that has the lowest expected error?
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Bayes Estimates

� Bayes estimates estimate the entire posterior distribution, p(θ|D).

� The posterior is then used in two ways:
1. Assess the range of plausible parameters given our data, p(θ ∈ [µ− ϵ, µ+ ϵ])

where µ is the mean of p(θ|D).
� [µ− ϵ, µ+ ϵ] is the credible interval.

2. Define an alternate objective for selecting a point estimate: minimize the posterior
risk

c(θ̂) =
∫
F
ℓ(θ, θ̂)p(θ | D) dθ,

where ℓ(θ, θ̂) is the loss
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Bayes Estimator

The Bayes estimator is the point estimate that minimizes the posterior risk c(θ̂),
where

c(θ̂) =
∫
F
ℓ(θ, θ̂)p(θ | D) dθ

The loss ℓ(θ, θ̂) expresses how wrong we are if we estimate θ̂ when the true answer
is θ.
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Bayes Estimator for Squared Loss

When ℓ(θ, θ̂) = (θ − θ̂)2:
c(θ̂) =

∫
F (θ − θ̂)2p(θ | D) dθ

θB = θ̂ =
∫
F θp(θ | D) dθ = E[θ | D]

CMPUT 267 Basics of Machine Learning 16



Bayesian Reasoning

� How do we assess our prediction Xn+1?
� How do we answer Pr(a ≤ Xn+1 ≤ b)?

1. MLE: F (b | θMLE)− F (a | θMLE)

2. MAP: F (b | θMAP)− F (a | θMAP)

3. Bayes optimal estimator:
F (b | θB)− F (a | θB)

4. Bayesian:
∫
F [F (b | θ)− F (a | θ)] p(θ | D) dθ

= E
[
F(b | θ)− F(a | θ)

∣∣D]
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How do we get model evidence?
To compute the Bayes estimator, we will need the full posterior p(w|D) (see
slide 12).

p(w|D) =
p(D|w)p(w)

p(D)

p(D) =

∫
p(D,w)dw =

∫
p(D|w)p(w)dw = E[p(D|w)]

So we need to compute the model evidence p(D) as well. How do we compute
p(D) ?
1. Numerical integration

w1,w2, . . . ,wm ∼ p(w), then p(D) = 1
m
∑m

i=1 p(D|wi)
� as m increases, this approximation gets better.

2. In some cases, we may have a closed-form for the integral. (with the concept
of conjugate priors)
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Estimation
1. True data distirubtion is ptrue.

2. Get dataset D = {xi}ni=1 where Xi has distribution ptrue.

3. Estimate properties of ptrue.
� E[Xi] or Var(Xi)
� ptrue itself.

4. Pick a distribution class to model ptrue.
� Gaussian N (µ, σ2 = 1), parameter w = µ to estimate.
� Poisson with w = λ.
� Complex distributions like a misture p(x) = c1N (µ1, σ

2
1 ) + c2N (µ2, σ

2
2), with

w = (c1, µ1, σ
2
1 , c2, µ2, σ

2
2).

5. Define objective to get w
� MLE c(w) = ln p(D|w)
� MAP c(w) = ln p(w|D)
� Bayesian: p(w|D)
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Conditional Models

� We may want to ask questions like "with what probability is some image an
image of a cat".

� How can we approach this with what we have been learning?

� We would like something like:

Pr(Y = cat|X = x)

where x are the pixels that describe the image.

� Or you might have {(xi, yi)} and you might want Pr(Y = 10|X = x).

� Our models can be parametrized families of conditional distributions

F = {f(y | x; θ) | θ ∈ Rk}
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MLE, MAP, Bayesian Prediction for Conditional Models

� Given a hypothesis space F = {p(· | ·, θ) | θ ∈ R} and a dataset
D = {(xi, yi)}ni=1 of observations xi and their corresponding targets yi:

� MLE: p(y|x) = p(y | x, θMLE) where θMLE = argmaxθ
∑

i ln p(yi | xi, θ)

� MAP: p(y|x) = p(y | x, θMAP) where θMAP = argmaxθ ln p(θ) +
∑

i ln p(yi | xi, θ)

� Bayesian: p(y | x) =
∫
F p(y | x, θ)p(θ | D) dθ
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