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CMPUT 267: Basics of Machine Learning 



Logistics
• Midterm Exam 1 during class on Thursday Feb 15 in the usual 

classroom 

• Formula sheet provided (on the course site already).  It will be printed for 
you - do not bring your own. 

• The practice exam and the real exam are similar. Please review the practice 
exam! 

• But they are definitely not the same. Do not simply try to pattern match. 
You need to understand the practice exam, and be able to apply that 
knowledge.  

• The exam is meant to test the basics, not to challenge you; answers can 
be short (the exam is short so each question is worth a lot)



Language of Probabilities
• Define random variables, and their distributions 

• So that we can formally reason about data and estimators 

• Express our beliefs about behaviour of these RVs, and relationships to other RVs 

• Examples:  

• p(x) Gaussian means we believe X is Gaussian distributed 

• p(y | X = x)—or written p(y | x)— is Gaussian means that when conditioned on 
x, y is Gaussian 

• p(w) and p(w | Data)



PMFs and PDFs
• Discrete RVs have PMFs 

• outcome space: e.g,   

• examples pmfs: probability tables, Poisson  

• Continuous RVs have PDFs 

• outcome space: e.g.,  

• example pdf: Gaussian, Gamma

Ω = {1,2,3,4,5,6}

p(k) =
λke−λ

k!

Ω = [0,1]



A few questions
• Do PMFs p(x) have to output values between [0,1]? Yes 

• Do PDFs p(x) have to output values between [0,1]? No (between [0, infinity)) 

• What other condition(s) are put on a function p to make it a valid pmf or pdf?



A few questions
• Do PMFs p(x) have to output values between [0,1]? Yes 

• Do PDFs p(x) have to output values between [0,1]? No (between [0, infinity)) 

• What other condition(s) are put on a function p to make it a valid pmf or pdf? 

•
PMF:  

• PDF: 

∑
x∈𝒳

p(x) = 1

∫𝒳
p(x)dx = 1



A few questions

• Is the following function a pdf or a pmf? 

•
       i.e.,  for p(x) = {

1
b − a if a ≤ x ≤ b,
0 otherwise.

p(x) =
1

b − a
x ∈ [a, b]



How would you define a uniform 
distribution for a discrete RV



How would you define a uniform 
distribution for a discrete RV

• Imagine x ∈ {1,2,3,4,5}
• What is the uniform pmf for this outcome space?



How would you define a uniform 
distribution for a discrete RV

• Imagine x ∈ {1,2,3,4,5}
• What is the uniform pmf for this outcome space?

•
p(x) = {

1
5 if x ∈ {1,2,3,4,5},
0 otherwise.



How do you answer this 
probabilistic question?



How do you answer this 
probabilistic question?

• For continuous RV X with a uniform distribution and outcome space [0,10], 
what is the probability that X is greater than 7?



How do you answer this 
probabilistic question?

• For continuous RV X with a uniform distribution and outcome space [0,10], 
what is the probability that X is greater than 7?

•

Pr(X > 7) = ∫
10

7
p(x)dx = ∫

10

7

1
10

dx

=
1
10 ∫

10

7
dx =

1
10

x |10
7

=
3
10



Multivariate Setting

•
Conditional distribution, , Marginal  

• Chain Rule  

• Bayes Rule  

•
Law of total probability  

• Question: How do you get the law of total probability from the chain rule?

p(y ∣ x) =
p(x, y)
p(x)

p(y) = ∑
x∈𝒳

p(x, y)

p(x, y) = p(y ∣ x)p(x) = p(x ∣ y)p(y)

p(y ∣ x) =
p(x ∣ y)p(y)

p(x)

p(y) = ∑
x∈𝒳

p(y |x)p(x)



Multivariate Setting

•
Conditional distribution, , Marginal  

• Chain Rule  

• Bayes Rule  

•
Law of total probability  

• Question: How do you get the law of total probability from the chain rule?

p(y ∣ x) =
p(x, y)
p(x)

p(y) = ∑
x∈𝒳

p(x, y)

p(x, y) = p(y ∣ x)p(x) = p(x ∣ y)p(y)

p(y ∣ x) =
p(x ∣ y)p(y)

p(x)

p(y) = ∑
x∈𝒳

p(y |x)p(x)

p(y) = ∑
x∈𝒳

p(x, y) = ∑
x∈𝒳

p(y |x)p(x)



Question
• Assume  and  is Gaussian 

• We have  is  and  is  

• Does this mean  is Gaussian? (i.e.,  is a Gaussian pdf)

X ∈ {0,1} p(y |X = x)

p(y |X = 0) 𝒩(μ0, σ2
0) p(y |X = 1) 𝒩(μ1, σ2

1)

Y p(y)



Question
• Assume  and  is Gaussian 

• We have  is  and  is  

• Does this mean  is Gaussian? (i.e.,  is a Gaussian pdf) 

• No. In fact, it is a mixture of two Gaussians (like in your assignment)
 

• You did not need to know it is a mixture of Gaussians, but you should know 
that the conditional distribution over an RV and its marginals are not 
necessarily the same type of distribution; conditioning on more information 
results in a different distribution over Y (typically a lower variance one)

X ∈ {0,1} p(y |X = x)

p(y |X = 0) 𝒩(μ0, σ2
0) p(y |X = 1) 𝒩(μ1, σ2

1)

Y p(y)

p(y) = p(y |X = 0)p(X = 0) + p(y |X = 1)p(X = 1) = c0𝒩(μ0, σ2
0) + c1𝒩(μ1, σ2

1)



Expectations

𝔼[ f(X)] = {
∑x∈𝒳 f(x)p(x) if X is discrete,

∫
𝒳

f(x)p(x) dy if X is continuous.



Expectations

𝔼[ f(X)] = {
∑x∈𝒳 f(x)p(x) if X is discrete,

∫
𝒳

f(x)p(x) dy if X is continuous.

Eg: , , , map , 
 determined by  , e.g, 
𝒳 = {1,2,3,4,5} f(x) = x2 Y = f(X) {1,2,3,4,5} → {1,4,9,16,25}

p(y) p(x) p(Y = 4) = p(X = 2)



Expectations

𝔼[ f(X)] = {
∑x∈𝒳 f(x)p(x) if X is discrete,

∫
𝒳

f(x)p(x) dy if X is continuous.

Eg: , , , map , 
 determined by  , e.g, 
𝒳 = {1,2,3,4,5} f(x) = x2 Y = f(X) {1,2,3,4,5} → {1,4,9,16,25}

p(y) p(x) p(Y = 4) = p(X = 2)

Eg: , , , map  
, 

𝒳 = {−1,0,1} f(x) = |x | Y = f(X) {−1,0,1} → {0,1}
p(Y = 1) = p(X = − 1) + p(X = 1) 𝔼[Y] = ∑

y∈0,1

yp(y) = ∑
x∈{−1,0,1}

f(x)p(x)



Conditional Expectations

Definition: 
The expected value of  conditional on  is Y X = x

𝔼[Y ∣ X = x] =
∑y∈𝒴 yp(y ∣ x) if Y is discrete,

∫
𝒴

yp(y ∣ x) dy if Y is continuous.



Conditional Expectations

Definition: 
The expected value of  conditional on  is Y X = x

𝔼[Y ∣ X = x] =
∑y∈𝒴 yp(y ∣ x) if Y is discrete,

∫
𝒴

yp(y ∣ x) dy if Y is continuous.



Recall Conditional Expectation 
Example

•  is the type of a book, 0 for fiction and 1 for non-fiction 
•  is the proportion of all books that are non-fiction 

•  is the number of pages  
•  is the proportion of all books with 100 pages 

•  is different from  

•  is different from  
• e.g.  is different from 

X
p(X = 1)

Y
p(Y = 100)

p(y |X = 0) p(y |X = 1)

𝔼[Y |X = 0] 𝔼[Y |X = 1]
𝔼[Y |X = 0] = 70 𝔼[Y |X = 1] = 150



Conditional Expectation Example (cont)

•                                                           

•  is the expectation over  under distribution  

•  is the expectation over  under distribution 

p(y |X = 0) p(y |X = 1)

𝔼[Y |X = 0] Y p(y |X = 0)

𝔼[Y |X = 1] Y p(y |X = 1)



What if Y is dollars earned?

• Y is now a continuous RV 

• Notice that  is defined by  and   

• What might be a reasonable choice for  and ?

p(y |x) p(y |X = 0) p(y |X = 1)

p(y |X = 0) p(y |X = 1)



What if Y is dollars earned?
• Notice that  is defined by  and  p(y |x) p(y |X = 0) p(y |X = 1)

pcylx-ot-ffuo.si) plylx-D-mfm.si)

re
- TiMo

-

- 300

Non - fiction
Fiction



Exercises

• Come up with an example of X and Y, and give possible choices for p(y | x) 

• Do you need to know p(x) to use p(y | x)? 

• If Y is discrete, then does X have to be discrete to specify p(y | x)?  

• If we have p(y | x), can we get p(x | y)? Why or why not?



Exercises
• Do you need to know p(x) to use p(y | x)? No. If I want p(y | x =20) for x 

temperature and y humidity, I do not need to know p(x = 20) 

• If Y is discrete, then does X have to be discrete to specify p(y | x)?  

• No. Y and X can be of different types (as we say with the books example).  

• Note: if X is continuous, we can ask p(y | x), because we are not asking 
Probability of x (which is zero), but rather defining the pdf/pmf over Y 
when conditioning on the fact that we observed x happening 

• If we have p(y | x), can we get p(x | y)? Why or why not? No, we also need 
p(x) and p(y), and then we can use Bayes rule.



Properties of Expectations

• Linearity of expectation: 
•  for all constant  
•  

• Products of expectations of 
independent random variables : 

•

𝔼[cX] = c𝔼[X] c
𝔼[X + Y] = 𝔼[X] + 𝔼[Y]

X, Y
𝔼[XY] = 𝔼[X]𝔼[Y]

You should know linearity of expectation



Variance

 

i.e.,  where . 

Equivalently, 

  

Definition: The variance of a random variable is 

.Var(X) = 𝔼 [(X − 𝔼[X])2]

𝔼[ f(X)] f(x) = (x − 𝔼[X])2

Var(X) = 𝔼 [X2] − (𝔼[X])2



Covariance

Definition: The covariance of two random variables is 

 
Cov(X, Y) = 𝔼 [(X − 𝔼[X])(Y − 𝔼[Y])]

= 𝔼[XY] − 𝔼[X]𝔼[Y] .



Covariance

Definition: The covariance of two random variables is 

 
Cov(X, Y) = 𝔼 [(X − 𝔼[X])(Y − 𝔼[Y])]

= 𝔼[XY] − 𝔼[X]𝔼[Y] .



Properties of Variances

•  for constant  

•  for constant  

•  

• For independent , because  
 

Var[c] = 0 c

Var[cX] = c2Var[X] c

Var[X + Y] = Var[X] + Var[Y] + 2Cov[X, Y]

X, Y Cov[X, Y] = 0
Var[X + Y] = Var[X] + Var[Y]

You should know all these properties

Let Y = 2X. What is Var(X + Y)? Let  for iid samples . What is Var(X + Y)?X = X1, Y = X2 X1, X2



Properties of Variances

•  for constant  

•  for constant  

•  

• For independent , because  
 

Var[c] = 0 c

Var[cX] = c2Var[X] c

Var[X + Y] = Var[X] + Var[Y] + 2Cov[X, Y]

X, Y Cov[X, Y] = 0
Var[X + Y] = Var[X] + Var[Y]

Let Y = 2X. What is Var(X + Y)?

Option 1: Var(X+Y) = Var(X) + Var(2X) + 2 Cov(X,2X)  
                  = Var(X) + 4Var(X) + 4 Var(X) = 9 Var(X) 
Option 2: Var(X+Y) = Var(3X) = 9 Var(X)



Independent and Identically 
Distributed (i.i.d.) Samples

• We usually won't try to estimate anything about a distribution based on only a 
single sample 

• Usually, we use multiple samples from the same distribution 
• Multiple samples: This gives us more information  
• Same distribution: We want to learn about a single population 

• One additional condition: the samples must be independent  

Definition: When a set of random variables are  are all 
independent, and each has the same distribution , we say they are 
i.i.d. (independent and identically distributed)

X1, X2, …
Xi ∼ p



Properties of Variances (cont)
•  for constant  

•  for constant  

•  

• For independent , because  
 

Var[c] = 0 c

Var[cX] = c2Var[X] c

Var[X + Y] = Var[X] + Var[Y] + 2Cov[X, Y]

X, Y Cov[X, Y] = 0
Var[X + Y] = Var[X] + Var[Y]

Let Y = 2X. What is Var(X + Y)?

Option 1: Var(X+Y) = Var(X) + Var(2X) + 2 Cov(X,2X)  
                  = Var(X) + 4Var(X) + 4 Var(X) = 9 Var(X) 
Option 2: Var(X+Y) = Var(3X) = 9 Var(X)

Let  for iid samples .  Let  be variance for .

What is Var(X + Y)? 
 

 

X = X1, Y = X2 X1, X2 σ2 X1, X2

Var(X + Y) = Var(X1) + Var(X2) + 2Cov(X1, X2)
= Var(X1) + Var(X2) = 2σ2



Estimators



Estimating Expected Value  
via the Sample Mean

We have  i.i.d. samples from the same distribution , with 
 and  for each .   

We want to estimate . 

Let's use the sample mean  to estimate . 

n p
𝔼[Xi] = μ Var(Xi) = σ2 Xi

μ

X̄ =
1
n

n

∑
i=1

Xi μ

 

 

 

    

𝔼[X̄] = 𝔼 [ 1
n

n

∑
i=1

Xi]
=

1
n

n

∑
i=1

𝔼[Xi]

=
1
n

n

∑
i=1

μ

=
1
n

nμ

= μ . ∎



Bias

 

• Bias can be positive or negative or zero 

• When , we say that the estimator  is unbiased

Definition: The bias of an estimator  is its expected 
difference from the true value of the estimated quantity : 

X̂
μ

Bias(X̂) = 𝔼[X̂] − μ

Bias(X̂) = 0 X̂



Variance of the Estimator
• Intuitively, more samples should make the estimator 

"closer" to the estimated quantity 

• We can formalize this intuition partly by characterizing 
the variance  of the estimator itself. 

• The variance of the estimator should decrease as 
the number of samples increases 

• Example:  for estimating : 
• The variance of the estimator shrinks linearly as 

the number of samples grows.

Var[X̂]

X̄ μ

 

 

 

 

  .

Var[X̄] = Var [ 1
n

n

∑
i=1

Xi]
=

1
n2

Var [
n

∑
i=1

Xi]
=

1
n2

n

∑
i=1

Var[Xi]

=
1
n2

n

∑
i=1

σ2

=
1
n2

nσ2 =
1
n

σ2



Mean-Squared Error
• Bias: whether an estimator is correct in expectation 

• Consistency: whether an estimator is correct in the limit of infinite data 

• Convergence rate: how fast the estimator approaches its own mean 
• For an unbiased estimator, this is also how fast its error shrinks 

• We don't necessarily care about an estimator being unbiased. 
• Often, what we care about is our estimator's accuracy in expectation 

Definition: Mean squared error of an estimator  of a quantity : 

 

X̂ μ

MSE(X̂) = 𝔼 [(X̂ − μ)2]  where 𝔼[X̂] may not equal μ



Bias-Variance Tradeoff

 

• If we can decrease variance without increasing bias, error goes down 

• Biasing the estimator toward values that are more likely to be true based 
on prior information

 MSE(X̂) = Var[X̂] + Bias(X̂)2



Bias-Variance Tradeoff
 

• Biasing the estimator toward values that are more likely to be true based on prior 
information 

• Example: over five years you have computed that a typical average number of 
accidents  for factories of a medium size 

• You want to estimate the average number of accidents for a new factory, but only 
have a weeks worth of data 

•
A reasonable (biased) estimator is:   

Or an even lower variance (higher bias) is  

 MSE(X̂) = Var[X̂] + Bias(X̂)2

k = 5

1
8

[k +
7

∑
i=1

xi]

1
10

[3k +
7

∑
i=1

xi]



Why is bias higher?

• Imagine  and the true mean is  

•   

•  

• You can check that the variance is slightly lower for the second one, since it 
is like it has 10 samples instead of 8, and both are lower than the unbiased 
sample mean

k = 5 μ = 4

𝔼 [ 1
8

(k +
7

∑
i=1

Xi)] =
1
8 (k + 𝔼[

7

∑
i=1

Xi]) =
1
8 (k + 7μ) =

1
8 (5 + 7 × 4) =

33
8

= 4.13 ≠ 4

𝔼 [ 1
10

(3k +
7

∑
i=1

Xi)] =
1

10 (3k + 𝔼[
7

∑
i=1

Xi]) =
1

10 (3k + 7μ) =
1
10 (3 × 5 + 7 × 4) =

43
10

= 4.3 ≠ 4



Prior information helps overcome 
high variance in sampling

It’s possible in a small sample to see only data  
between 50 and 100 

 
The sample mean is highly inaccurate 

due to the high variance in this distribution 
 

Once we have lots of data, this problem disappears 
We really only care about introducing bias to reduce  

variance for smaller sample sizes



Downward-biased Mean Estimation
Example: Let's estimate  given i.i.d  with  using:  μ X1, …, Xn 𝔼[Xi] = μ Y =

1
n+100

n

∑
i=1

Xi

This estimator is biased: 

 

 

 

𝔼[Y] = 𝔼 [ 1
n + 100

n

∑
i=1

Xi]
=

1
n + 100

n

∑
i=1

𝔼[Xi]

=
n

n + 100
μ

Bias(Y) =
n

n + 100
μ − μ =

−100
n + 100

μ

This estimator has low variance: 

 

 

 

Var(Y) = Var [ 1
n + 100

n

∑
i=1

Xi]
=

1
(n + 100)2

Var [
n

∑
i=1

Xi]
=

1
(n + 100)2

n

∑
i=1

Var[Xi]

=
n

(n + 100)2
σ2



  

 

MSE(X̄) = Var(X̄) + Bias(X̄)2

= Var(X̄)

=
1

10

Estimating  Near 0μ
Example: Suppose that , , and σ = 1 n = 10 μ = 0.1

Bias(X̄) = 0

Var(X̄) =
σ2

n

  

 

 

MSE(Y) = Var(Y) + Bias(Y)2

=
n

(n + 100)2
σ2 + ( 100

n + 100
μ)

2

=
10

1102
+ ( 100

110
0.1)

2

≈ 9 × 10−4



Exercise: What is the variance of 
these estimators?

Questions: 

Suppose we can observe a different variable .  Is  a good estimator of  in the following cases?  Why or why not? 

1.  

2.  

3. , for 

Y Y 𝔼[X]

Y ∼ Uniform[0,10]

Y = 𝔼[X] + Z,  where Z ∼ N(0,1002)

Y =
1
n

n

∑
i=1

Xi Xi ∼ p



Exercise: What is the variance of 
these estimators?

Estimators: 

1.  

2.  

3. , for 

Y1 ∼ Uniform[0,10]

Y2 = 𝔼[X] + Z,  where Z ∼ N(0,1002)

Y3 =
1
n

n

∑
i=1

Xi Xi ∼ p

Var(Y1) =
1
12

(10 − 0)2 =
100
12

= 8.3̄

Var(Y2) = Var(𝔼[X] + Z) = ?

Var(Y3) =
σ2

n



Exercise: What is the variance of 
these estimators?

Estimators: 

1.  

2.  

3. , for 

Y1 ∼ Uniform[0,10]

Y2 = 𝔼[X] + Z,  where Z ∼ N(0,1002)

Y3 =
1
n

n

∑
i=1

Xi Xi ∼ p

Var(Y2) = Var(𝔼[X] + Z)
= Var(Z) ▹ Var(c + Y) = Var(Y)
= 1002



MSE of these estimators

Estimators: 

1.  

2.  

3. , for 

Y1 ∼ Uniform[0,10]

Y2 = 𝔼[X] + Z,  where Z ∼ N(0,1002)

Y3 =
1
n

n

∑
i=1

Xi Xi ∼ p

Var(Y1) =
1
12

(10 − 0)2 =
100
12

= 8.3̄

Var(Y2) = Var(𝔼[X] + Z) = 1002

Var(Y3) =
σ2

n

Bias(Y1) = 𝔼[Y1] − 𝔼[X] = 5

Bias(Y2) = 𝔼[Y2] − 𝔼[X] = 0

Bias(Y3) = 0

 MSE(X̂) = Var[X̂] + Bias(X̂)2

MSE(Y1) = 52 + 8.3̄ = 33.3̄

MSE(Y2) = 0 + 1002 = 10000

MSE(Y3) = 0 +
σ2

n



Concentration Inequalities

• We would like to be able to claim   

for some 

Pr ( X̄ − μ < ϵ) > 1 − δ

δ, ϵ > 0



Hoeffding's Inequality
Theorem: Hoeffding's Inequality 

Suppose that  are distributed i.i.d, with . 
Then for any  , 

. 

Equivalently, for , .

X1, …, Xn a ≤ Xi ≤ b
ϵ > 0

Pr ( X̄ − 𝔼[X̄] ≥ ϵ) ≤ 2 exp (−
2nϵ2

(b − a)2 )
δ ∈ (0,1) Pr ( X̄ − 𝔼[X̄] ≤ (b − a)

ln(2/δ)
2n ) ≥ 1 − δ



Chebyshev's Inequality
Theorem: Chebyshev's Inequality 

Suppose that  are distributed i.i.d. with variance .  
Then for any , 

. 

Equivalently, for , .

X1, …, Xn σ2

ϵ > 0

Pr ( X̄ − 𝔼[X̄] ≥ ϵ) ≤
σ2

nϵ2

δ ∈ (0,1) Pr X̄ − 𝔼[X̄] ≤
σ2

δn
≥ 1 − δ



When to Use Chebyshev, 
When to Use Hoeffding?

• If , then  

• Hoeffding's inequality gives ; 

Chebyshev's inequality gives  

• Hoeffding's inequality gives a tighter bound*, but it can only be used on bounded random 
variables 

✴
whenever  

• Chebyshev's inequality can be applied even for unbounded variables

a ≤ Xi ≤ b Var[Xi] ≤
1
4

(b − a)2

ϵ = (b − a)
ln(2/δ)

2n
=

ln(2/δ)
2

(b − a)
1
n

ϵ =
σ2

δn
≤

(b − a)2

4δn
=

1

2 δ
(b − a)

1
n

ln(2/δ)
2

<
1

2 δ
⟺ δ < ∼ 0.232



Sample Complexity

 

• We want sample complexity to be small  

• Sample complexity is determined by: 
1. The estimator itself 

• Smarter estimators can sometimes improve sample complexity (e.g., smart priors) 
2. Properties of the data generating process 

• If the data are high-variance, we need more samples for an accurate estimate 
• But we can reduce the sample complexity if we can bias our estimate toward the 

correct value

Definition: 
The sample complexity of an estimator is the number of samples required to guarantee an 
error of at most  with probability , for given  and . ϵ 1 − δ δ ϵ



Sample Complexity

For , Chebyshev gives 

  

 

 

δ = 0.05

ϵ =
σ2

δn
=

1

0.05

σ

n

⟺ ϵ = 4.47
σ

n

⟺ n = 4.47
σ
ϵ

⟺ n = 19.98
σ2

ϵ2

With Gaussian assumption and  

      

 

δ = 0.05,

ϵ = 1.96
σ

n

⟺ n = 1.96
σ
ϵ

⟺ n = 3.84
σ2

ϵ2

Definition: 
The sample complexity of an estimator is the number of samples required to guarantee an expected error 
of at most  with probability , for given  and . ϵ 1 − δ δ ϵ



Summary
• Concentration inequalities let us bound the probability of a given estimator being at 

least  from its mean (expected value) 

• Sample complexity is the number of samples needed to attain a desired error bound  
at a desired probability  

• We only discussed sample complexity for unbiased estimators 

• The mean squared error of an estimator decomposes into bias (squared) and variance 

• Using a biased estimator can have lower error than an unbiased estimator 

• Bias the estimator based on some prior information 

• But this only helps if the prior information is correct, cannot reduce error by adding in 
arbitrary bias

ϵ

ϵ
1 − δ



Optimization

• Represent a problem as an optimization problem 

• Solve a discrete problem by iterating over options and picking the one with 
the minimum value according to the objective 

• Solve a continuous optimization problem by finding stationary points  

• A point  is a stationary point if   

• or for multivariate , 

w c′ (w) = 0

w ∇c(w) = 0



Poll Question: Which of the following 
are true about stationary points?

• 1. A stationary point is the global minimum of a function 

• 2. A stationary point is a point where the gradient is zero 

• 3. A global minimum is a stationary point, but a stationary point may not be 
a global minimum 

• 4. If we find a stationary point, then we have found the minimum of our 
function 

• 5. We can use the second derivative test to identify the type of stationary 
point we have



Poll Question: Which of the following 
are true about stationary points?

• 1. A stationary point is the global minimum of a function 

• 2. A stationary point is a point where the gradient is zero 

• 3. A global minimum is a stationary point, but a stationary point may not be 
a global minimum 

• 4. If we find a stationary point, then we have found the minimum of our 
function 

• 5. We can use the second derivative test to identify the type of stationary 
point we have

Answer: 2, 3 and 5



Optimization
• Represent a problem as an optimization problem 

• Solve an optimization problem by finding stationary points  

• Define first-order gradient descent  

• Define second-order gradient descent  

• Define step size and adaptive step size 

• Explain the role and importance of step sizes in first-order gradient descent 

• Apply gradient descent to numerically find local optima



Exercise

• Imagine .  

• What is the first-order update, assuming we are currently at point ?   

• i.e., the gradient descent update tells us how to modify our current point 
to descend on our surface c.

c(w) = 1
2 (xw − y)2

wt



Exercise

• Imagine .  

• What is the first-order update, assuming we are currently at point ?   

• i.e., the gradient descent update tells us how to modify our current point 
to descend on our surface c.

c(w) = 1
2 (xw − y)2

wt

Answer:  for some stepsize wt+1 ← wt − ηtc′ (wt) ηt > 0

   so we have that.  c′ (w) = (xw − y)x wt+1 ← wt − ηt(xwt − y)x



Exercise
• Imagine .  

• What is the first-order update, assuming we are currently at point ?   

• i.e., the gradient descent update tells us how to modify our current point 
to descend on our surface c. 

• What if instead we did . What would happen? 

• The second-order update is . Why might this update 

be preferable to the first-order? (poll)

c(w) = 1
2 (xw − y)2

wt

wt+1 ← wt + ηtc′ (wt)

wt+1 ← wt −
c′ (wt)
c′ ′ (wt)



Poll Question: Why might the 
second-order update be preferable?

• 1. It is easier to compute than the first-order one. 

• 2. It tells us how to pick a good stepsize. 

• 3. The second-order update is more likely to get stuck at a saddlepoint 

• 4. The first-order update might get stuck in local minimum, but not the 
second-order update



Poll Question: Why might the 
second-order update be preferable?

• 1. It is easier to compute than the first-order one. 

• 2. It tells us how to pick a good stepsize. 

• 3. The second-order update is more likely to get stuck at a saddlepoint 

• 4. The first-order update might get stuck in local minimum, but not the 
second-order update

Answer: 2



Closed-form solutions

•  has a closed-form solution because 

•  does not have a closed-form solution because 

• Can’t isolate w on one side, to get an explicit formula (closed-form) 

• Note: this c is not a hard optimization problem, it is convex

c(w) = (w − 3)2

c(w) = w2 + exp(w)

constantly decreasing and the second derivative is negative. Then, the derivative begins to
increase from its maximally negative point cos(fi) = ≠1, and becomes less and less negative
until reaching the bottom of the hill for w = 3fi/2 and becoming zero. Then again the slope
flips and starts to get more and more positive until reaching 2fi. In this region between
[fi, 2fi] the derivative is constantly increasing and the second derivative is positive.

1/10/22, 12:26 PM Desmos | Graphing Calculator

https://www.desmos.com/calculator 1/2

sin(w)cos(w)

�/2
3�/2

Figure 4.2: Visualizing the behavior of the derivative for the red function c(w) = sin(w),
where the derivative iis in blue cÕ(w) = cos(w).

In the first region [0, fi] the function is concave and in the second region [fi, 3fi/2] it is
convex. Locally, the stationary point in a concave region will be a maxima; for a convex
region, it will be a minima. The second derivative tells us this local curvature. ⇤

In some cases, we can find a closed-form solution for a stationary point, meaning we
can isolate w and have an explicit formula for w. For example, if we have c(w) = (w ≠ 3)2,
then

cÕ(w) = 2(w ≠ 3) = 0 =∆ w ≠ 3 = 0 =∆ w = 3.

On the other hand, for many (or arguably most) objectives, we cannot isolate w in this way
and cannot get a closed-form solution. For example, let c(w) = w2 + exp(w). Then

cÕ(w) = 2w + exp(w) = 0 =∆ exp(w) = ≠2w

and we are stuck. This is not because this is a nonconvex or even di�cult optimization.
In fact, this is a convex objective, which we can see by checking the second derivative:
cÕÕ(w) = 2 + exp(w) > 0 for all w. In fact, it is an easy optimization problem, but we will
need to use an iterative method called gradient descent to solve it, described in the next
section.

4.3 Reaching Stationary Points with Gradient Descent
The key idea behind gradient descent is to approximate the function with a Taylor series
approximation. This approximation facilitates computation of a descent direction locally
on the function surface. We begin by considering the univariate setting, with w œ R. A
function c(w) in the neighborhood of point w0, can be approximated using the Taylor series

c(w) =
Œÿ

n=0

c(n)(w0)
n! (w ≠ w0)n,
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The key idea behind gradient descent is to approximate the function with a Taylor series
approximation. This approximation facilitates computation of a descent direction locally
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Second-order update
Example 14: Let us revisit our example c(w) = w2 + exp(w), where cÕ(w) = 2w + exp(w)
and cÕÕ(w) = 2 + exp(w). Let us start w0 = 0 and do one second-order update.

w1 = w0 ≠ cÕ(w0)
cÕÕ(w0)

= 0 ≠ 0 + exp(0)
2 + exp(0)

= ≠1
3

Now let us do the next update.

w2 = w1 ≠ cÕ(w1)
cÕÕ(w1)

= ≠1
3 ≠

≠2
3 + exp(≠1

3)
2 + exp(≠1

3)
= ≠0.3516893316

The change on this second update was much smaller. Now let’s do one more update.

w3 = w2 ≠ cÕ(w2)
cÕÕ(w2)

= ≠0.352 ≠ ≠0.352 ú 2 + exp(≠0.352)
2 + exp(≠0.352)

= ≠0.351733711

We can check the first derivative at this point and we find cÕ(w3) = cÕ(≠0.351733711) ¥
6.7 ◊ 10≠10, which is very close to zero.

We can also plot the Taylor series expansion around the first two points, visualized in
Figure ??. The first approximation around w0 = 0 is

ĉ(w) = c(w0) + (w ≠ w0)cÕ(w0) + 1
2(w ≠ w0)2cÕÕ(w0)

= exp(0) + w exp(0) + (2 + exp(0))1
2w2 = 1 + w + 3

2w2

⇤
In first-order gradient descent, the approximation is worse, where we no longer use the

true second derivative. Instead, we guess or approximate the second derivative by picking
a value ÷t such that 1

÷t
¥ cÕÕ(wt). This new term ÷t is called the stepsize, because it

dictates how far we step in the direction of the gradient. Namely, if we solve for wt+1 =
argminw c(wt) + (w ≠ wt)cÕ(wt) + 1

2÷t
(w ≠ wt)2, we get the update

wt+1 = wt ≠ ÷tc
Õ(wt). (4.3)

From this, one can see that, given access to the second derivative, a reasonable choice for
the stepsize is ÷t = 1

cÕÕ(wt) .
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= 0 ≠ 0 + exp(0)
2 + exp(0)

= ≠1
3

Now let us do the next update.

w2 = w1 ≠ cÕ(w1)
cÕÕ(w1)

= ≠1
3 ≠

≠2
3 + exp(≠1

3)
2 + exp(≠1

3)
= ≠0.3516893316

The change on this second update was much smaller. Now let’s do one more update.
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cÕÕ(w2)
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We can check the first derivative at this point and we find cÕ(w3) = cÕ(≠0.351733711) ¥
6.7 ◊ 10≠10, which is very close to zero.

We can also plot the Taylor series expansion around the first two points, visualized in
Figure ??. The first approximation around w0 = 0 is

ĉ(w) = c(w0) + (w ≠ w0)cÕ(w0) + 1
2(w ≠ w0)2cÕÕ(w0)

= exp(0) + w exp(0) + (2 + exp(0))1
2w2 = 1 + w + 3

2w2

⇤
In first-order gradient descent, the approximation is worse, where we no longer use the

true second derivative. Instead, we guess or approximate the second derivative by picking
a value ÷t such that 1

÷t
¥ cÕÕ(wt). This new term ÷t is called the stepsize, because it

dictates how far we step in the direction of the gradient. Namely, if we solve for wt+1 =
argminw c(wt) + (w ≠ wt)cÕ(wt) + 1

2÷t
(w ≠ wt)2, we get the update

wt+1 = wt ≠ ÷tc
Õ(wt). (4.3)

From this, one can see that, given access to the second derivative, a reasonable choice for
the stepsize is ÷t = 1

cÕÕ(wt) .
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Things you do not need to  
know for the exam

• You do not need to know the formulas for any pdfs or pmfs 

• You should be comfortable with Bayes rule, chain rule for probability and 
expectation/variance rules, though I will typically remind you of these rules 

• You should know basic math rules, like   

• You do not have to remember the Chebyshev’s or Hoeffding’s inequality, but 
you do have to know how to use them 

• You will not have to compute any derivatives or integrals 

ln exp(a) = a


