
Review for Midterm Exam 2 
  

Chapters 5—8 
(Need to still know chapters1—4)

CMPUT 267: Basics of Machine Learning 



Logistics
• Midterm Exam 2 during class on Tuesday March 26 in the usual 

classroom 

• Formula sheet provided (on the course site already).  It will be printed for 
you - do not bring your own. 

• The practice exam and the real exam are similar. Please review the practice 
exam! 

• But they are definitely not the same. Do not simply try to pattern match. 
You need to understand the practice exam, and be able to apply that 
knowledge.  

• The exam is meant to test the basics, not to challenge you; answers can 
be short (the exam is short so each question is worth a lot)



Midterm Details

• The content is up to Chapter 8 (Linear and Polynomial Regression), and up 
to and including the March 8 lecture  

• The focus is on Chapters 5-8, but Chapter 1-4 are important background



Language of Probabilities
• Define random variables, and their distributions 

• So that we can formally reason about data and estimators 

• Express our beliefs about behaviour of these RVs, and relationships to other RVs 

• Examples:  

• p(x) Gaussian means we believe X is Gaussian distributed 

• p(y | X = x)—or written p(y | x)— is Gaussian means that when conditioned on 
x, y is Gaussian 

• p(w) and p(w | Data)



Very brief summary of Ch 1-4

• Probability 

• Estimators 

• Optimization



Probability

• Define a random variable 

• Define joint and conditional probabilities for continuous and discrete 
random variables 

• Define probability mass functions and probability density functions 

• Define independence and conditional independence 

• Define expectations for continuous and discrete random variables  

• Define variance for continuous and discrete random variables



Probability (2)

• Represent a problem probabilistically 

• e.g., how likely was the outcome? 

• Use a provided distribution 

• I will always remind you of the density expression for a given distribution 

• Apply Bayes' Rule to manipulate probabilities



Estimators
• Define estimator 

• Define bias 

• Demonstrate that an estimator is/is not biased  

• Derive an expression for the variance of an estimator  

• Define consistency 

• Demonstrate that an estimator is/is not consistent 

• Justify when the use of a biased estimator is preferable 



Poll Question: When is the use of a 
biased estimator preferable?

• 1. It is always better because it biases towards the true solution 

• 2. If the bias reduces the mean-squared error by reducing the variance 

• 3. If the bias reduces the mean-squared error by increasing the variance 

• 4. It is rarely justifiable

Answer: 2



Summary
• Concentration inequalities let us bound the probability of a given estimator being at least 

 from its mean (expected value).   

• Sample complexity is the number of samples needed to attain a desired error bound  at 
a desired probability  

• We only discussed sample complexity for unbiased estimators 

• The mean squared error of an estimator decomposes into bias (squared) and variance 

• Using a biased estimator can have lower error than an unbiased estimator 

• Bias the estimator based on some prior information 

• But this only helps if the prior information is correct, cannot reduce error by adding in 
arbitrary bias

ϵ Pr ( X̄ − μ ≤ ϵ) ≥ 1 − δ

ϵ
1 − δ



Optimization
• Represent a problem as an optimization problem 

• Solve an optimization problem by finding stationary points  

• Define first-order gradient descent  

• Define second-order gradient descent  

• Define step size and adaptive step size 

• Explain the role and importance of step sizes in first-order gradient descent 

• Apply gradient descent to numerically find local optima



Closed-form solutions

•  has a closed-form solution because 

•  does not have a closed-form solution because 

• Can’t isolate w on one side, to get an explicit formula (closed-form) 

• Note: this c is not a hard optimization problem, it is convex

c(w) = (w − 3)2

c(w) = w2 + exp(w)

constantly decreasing and the second derivative is negative. Then, the derivative begins to
increase from its maximally negative point cos(fi) = ≠1, and becomes less and less negative
until reaching the bottom of the hill for w = 3fi/2 and becoming zero. Then again the slope
flips and starts to get more and more positive until reaching 2fi. In this region between
[fi, 2fi] the derivative is constantly increasing and the second derivative is positive.
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Figure 4.2: Visualizing the behavior of the derivative for the red function c(w) = sin(w),
where the derivative iis in blue cÕ(w) = cos(w).

In the first region [0, fi] the function is concave and in the second region [fi, 3fi/2] it is
convex. Locally, the stationary point in a concave region will be a maxima; for a convex
region, it will be a minima. The second derivative tells us this local curvature. ⇤

In some cases, we can find a closed-form solution for a stationary point, meaning we
can isolate w and have an explicit formula for w. For example, if we have c(w) = (w ≠ 3)2,
then

cÕ(w) = 2(w ≠ 3) = 0 =∆ w ≠ 3 = 0 =∆ w = 3.

On the other hand, for many (or arguably most) objectives, we cannot isolate w in this way
and cannot get a closed-form solution. For example, let c(w) = w2 + exp(w). Then

cÕ(w) = 2w + exp(w) = 0 =∆ exp(w) = ≠2w

and we are stuck. This is not because this is a nonconvex or even di�cult optimization.
In fact, this is a convex objective, which we can see by checking the second derivative:
cÕÕ(w) = 2 + exp(w) > 0 for all w. In fact, it is an easy optimization problem, but we will
need to use an iterative method called gradient descent to solve it, described in the next
section.

4.3 Reaching Stationary Points with Gradient Descent
The key idea behind gradient descent is to approximate the function with a Taylor series
approximation. This approximation facilitates computation of a descent direction locally
on the function surface. We begin by considering the univariate setting, with w œ R. A
function c(w) in the neighborhood of point w0, can be approximated using the Taylor series

c(w) =
Œÿ

n=0

c(n)(w0)
n! (w ≠ w0)n,

47
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Stochastic gradient descent

•
If , then we can be more computationally efficient by 

using a stochastic approximation to the gradient on each step 

• Each update consists of taking a mini-batch  and updating with 

•

c(w) =
1
n

n

∑
i=1

ci(w)

ℬ

wt+1 ← wt − ηt
1
b ∑

i∈ℬ

∇ci(wt)



Stochastic gradient descent

• Each update consists of taking a mini-batch  and updating with 

•
 

• We do this for T iterations (where T is likely more than the number of 
iterations used for GD) 

• Example, if T = 640, n = 4096 and the mini-batch size is b = 32, then we 
need to do numepochs = 5 to get T = (n/b)*numepochs = 640 updates

ℬ

wt+1 ← wt − ηt
1
b ∑

i∈ℬ

∇ci(wt)



You do not need to know

• Specific step-size selection algorithms 

• Adagrad 

• Line search 

• stopping criteria, for GD or SGD 

• for GD we usually check if the gradient norm becomes small enough 

• for SGD we just fixed the number of epochs (in practice, you might 
periodically check if improvement in the objective function has plateaued)



Parameter Estimation
• Formalize a problem as a parameter estimation problem 

• e.g., formalize modeling commute times as parameter estimation for a 
Poisson distribution, using maximum likelihood  

• Describe the differences between MAP, MLE, and Bayesian 
parameter estimation  

• MAP  versus MLE  

• Bayesian learns , reasons about plausible parameters 

• Define a conjugate prior

max
θ

p(θ |𝒟) max
θ

p(𝒟 |θ)

p(θ |𝒟)

Posterior
Likelihood

Prior

Evidence
p(y ∣ x) =

p(x ∣ y)p(y)
p(x)



The Likelihood Term and the Prior

• Likelihood:  
 

• e.g., Poisson 

p(𝒟 |w) = Πn
i=1p(xi |w)

p(xi |w) =
wxi exp(−w)

xi!

• Prior:  
 for pdf or pmf 

parameters of :  

• e.g., conjugate prior for 
Poisson is Gamma with 
parameters 

p(w |θ0)
p(w) θ0

θ0 = (a, b)

p(w |θ0) =
wa−1 exp(−w/b)

baΓ(a)



The Likelihood Term and the Prior
• Likelihood:  

 

• e.g., Poisson 

p(𝒟 |w) = Πn
i=1p(xi |w)

p(xi |w) =
wxi exp(−w)

xi!

• Prior:  
 for pdf or pmf 

parameters of :  

• e.g., conjugate prior for 
Poisson is Gamma with 
parameters 

p(w |θ0)
p(w) θ0

θ0 = (a, b)

p(w |θ0) =
wa−1 exp(−w/b)

baΓ(a)• MLE: maximize 
 

• MAP: maximize

p(𝒟 |w) = Πn
i=1p(xi |w)

p(𝒟 |w)p(w |θ0) = p(w |θ0)Πn
i=1p(xi |w)



The Likelihood Term and the Prior
• Prior:  

 for pdf or pmf 
parameters of :   

• e.g., conjugate prior for 
Poisson is Gamma with 
parameters 

p(w |θ0)
p(w) θ0

θ0 = (a, b)

p(w |θ0) =
wa−1 exp(−w/b)

baΓ(a)

• MLE: maximize 
 

• MAP: maximize  

• Bayesian: obtain posterior  

• e.g., if Poisson likelihood with conjugate prior Gamma with 
prior parameters , then after observing evidence 

 posterior is Gamma with   

where  and 

p(𝒟 |w) = Πn
i=1p(xi |w)

p(𝒟 |w)p(w |θ0) = p(w |θ0)Πn
i=1p(xi |w)

p(w |𝒟)

θ0 = (a, b)
𝒟1 = {(xi)}

n1
i=1 θ1 = (a1, b1)

a1 = a +
n1

∑
i=1

xi b1 =
1

n1 + 1/b



Gamma Prior and Posterior
• For a = 3 and b = 1, we have  because  

•
For  we have  

•
 and  

•

p(w) = 1
2 w2 exp(−w) Γ(3) = 2

𝒟 = {2,5,9,5,4,8}
n1

∑
i=1

xi = 33

a1 = a +
n1

∑
i=1

xi = 36 b1 =
1

n1 + 1/b
= 1/7

p(w |𝒟) =
wa1−1 exp(−w/b1)

ba1
1 Γ(a1)

=
w35 exp(−7w)

7−36Γ(36)



Gamma Prior and Posterior
• For a = 3 and b = 1, we have  as  

•  (Red)

p(w) = 1
2 w2 exp(−w) Γ(k) = (k − 1)!

p(w |𝒟) =
wa1−1 exp(−w/b1)

ba1
1 Γ(a1)

=
w35 exp(−7w)

7−36Γ(36)
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What is not a conjugate prior?

• Example:  X= number of accidents in a day. 

• Assume p(x) is Poisson.  

• Imagine we pick the prior p(w) to be a Beta distribution or some other 
distribution than a Gamma distribution. 

• Then the posterior may be in a form that we cannot solve - i.e. it doesn’t 
reduce to the form of a known distribution class.



Poll Question: Why is MAP useful, namely why is it useful 
to include a prior over the weights? (Select all that apply)

• 1. It incorporates bias to reduce the variance 

• 2. The prior makes our solution closer to the true solution 

• 3. It lets us reason about uncertainty in our parameters 

• 4. It let's us incorporate expert knowledge about plausible weight values

Answer: 1, 4



You do not need to know

• Any specific conjugate priors, or specific formulas for pmfs/pdfs 

• I will tell you if something is a conjugate prior, you just need to know what 
that means 

• I will not get you to do complex derivations, to solve MLE or MAP



Formalizing Prediction
• Supervised learning problem: Learn a predictor  from a 

dataset  

•  is the set of observations, and  is the set of targets 
• Classification problems have discrete, unordered targets 
• Regression problems have continuous targets 
• Once a predictor is learned, its performance is measured by the expected 

 of predicting  when the true value is  
• An optimal predictor for a given distribution  minimizes the 

expected cost

f : 𝒳 → 𝒴
𝒟 = {(xi, yi)}n

i=1

𝒳 𝒴

cost( ̂y, y) ̂y y
p(x, y)



Difference between Classification 
and Regression

• If I learn a classifier f(x), for classes {0, 1, 2, 3}, what is the range of the 
predictor f? 

• What is the optimal predictor for 0-1 cost for classification? 

• Can I use classes like {apples, oranges, pineapples}? How would we write 
our optimal predictor for this set of classes? 

• What is the optimal prediction for squared error costs for regression?



Prediction Concepts
• Describe the differences between regression and classification 

• Derive the optimal classification predictor for a given cost  

• Derive the optimal regression predictor for a given cost 

• Understand that the optimal predictor is different depending on the cost 

• Describe the difference between irreducible and reducible error 
• Even an optimal predictor has some irreducible error. 

Suboptimal predictors have additional, reducible error

Reducible error Irreducible error

𝔼[C] = 𝔼 [(f(X) − f*(X))2] + 𝔼 [(f*(X) − Y)2]



Is Cost the Same as our Objective c?

• We gave this a different name to indicate it might not be 

• The Cost is the penalty we incur for inaccuracy in our predictions 

• We parameterize our function or distribution with parameters   

• Our objective to find  has typically been the negative log likelihood 

• Example: we might learn  using  

• For the 0-1 cost, we evaluate the predictor 

w

w

p(y |x, w) c(w) = − ln p(𝒟 |w)

f(x) = arg max
y

p(y |x, w)



Optimal predictors vs MLE/MAP
• Why do we learn  if we only care about ? 

• We still want to recognize that y is stochastic for a given x, so we reason about  
and about modelling it 

• For regression, we don’t need , but we do for other predictors 

• Why do we have to learn a predictor  that returns one prediction  instead of just 
learning  and returning the whole distribution? 

• At some point you have to make a decision: are you going to treat or not? 

• Is the optimal predictor an MLE or MAP estimator? 

• The optimal predictor f* has nothing to do with data. We learn f on data (using MAP or 
MLE) to try to best approximate f*. Chapter 7 is not about learning nor data

p(y |x) 𝔼[Y |x]

p(y |x)

p(y |x)

f(x) ̂y
p(y |x)
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p(y |x)



Linear Regression
• Represent a problem as a linear regression 

• Understand that we assume  is Gaussian and that the resulting MLE 

objective corresponds to the sum of squared errors  

• Understand the computational cost of the gradient descent and stochastic 
gradient descent solutions to linear regression 

• Represent a polynomial regression problem as linear regression 

• Will not be directly tested 

• Do not need to know the closed-form solution with matrices

p(y |x)
n

∑
i=1

(x⊤
i w − yi)2


