CMPUT 267 Basics of Machine Learning

Prediction and Optimal Predictors
Linear Regression

& ATBERT

February 29, 2024



Announcements

> Participation and Reading Exercises for MLE and MAP

> on eClass tonight along with recorded lecture covering MLE and MAP.
> Exercises will be up for a week.

> Assignment 2a and 2b : deadlines pushed. Check eClass and course website.



Outline

1. Recap
2. Optimal Prediction for Classification - Example
3. Irreducible vs. Reducible Error

4. MLE Formulation for Linear Regression



Recap

> Supervised learning problem: Learn a predictor f : X — ) from a dataset
D = {(x;, Yi) )y

> X is the set of observations and ) is the set of targets.

> Classification problems have discrete targets.

> Regression problems have continuous targets (order matters).



Recap: Optimal Prediction

> Suppose we know the true joint distribution p(x, y) and we want to use it to
make predictions in a classification problem.

> The optimal classification predictor makes the best use of this fucntion.

> As with the optimal estimator, we measure the quality of a predictor f(x) by its
exptected cost E|[C].

> The optimal predictor minimizes E|[C].

/\
E[C] — / Zcost(fx X, y)dx,

yey

where cost(y, y) is the cost of predicting y when the true value is y, and
C = cost (f(x),y) is a random variable.



Recap: Optimal Classification Prediction

> Bayes risk classifier:

f* = arg min/ p(x) E[C | X = x]dx
fer JX

f*(x) = argmin E[C | X = X] = arg min Zcost(f/,y)p(y | %)
feF }7637 yey

> 0 — 1 cost function: ( /}L\
f* = argmaxp(y | X) VM&D& o P (\I]
yey
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Recap: Optimal Regression Prediction

> Most common cost functions:

1. squared error: cost(§,y) = (J — y)?
2. absolute error: cost(y,y) = |[J — Y|

> Squared error function penalizes large error values more than absolute error
function.

> Optimal prediction for squared error:

f(x) = E[Y | X = X|

For chsolude ervl ,é‘” (7~ ma&w@”@



Example: Classification

> A medical example where “0 — 1" cost, but with cost differing by type of wrong
answer.

> y = —T1:no disease; y = 1. disease.

> if disease predicted, further tests; no tests if no 1 ' huf
disease predicted. (no disease)  (disease)

> false positive: leads to unnecessary test. 5 (o di_s1ease) 0 7p) | 999 &N

> false negative: leads to untreated disease (and { (dgl;;se) T &p TP
law suit later). WJM,’.M” o



Example

> ye{-1,1}
> Given x, let:

py=1[x)=p1 py=-1[x)=po (pPo=1-p1)
f*(x) = arfgerjn_in E[C | X = X]
[HD - ag 2 k() Py )
\f]‘eH J &



qey aey 764

A ¢
ﬂ’—Hb

Feost (G y=1) ply 1]

Fo ot T ot (g, ‘1>P/‘()W> - a%mM&wsﬂMﬂ P/ﬂf‘[:@ g/




Error in prediction Kgrverou

> QOptimal prediction doesn't mean error =0.

> What is the quality of our predictor? It may be optimal or suboptimal. Let's look
at the expected squared error.

> First let's consider the optimal predictor, f*(x) = E[Y | X = x].

BLC) = | p0o0[[ (70 ~y)? ply | X = x)dyd

— [ px) [ (LY |X=x]~y)?ply | X = x)dycx
X Y



Error in prediction

> QOptimal prediction doesn't mean error =0.

> What is the quality of our predictor? It may be optimal or suboptimal. Let's look
at the expected squared error.

> First let's consider the optimal predictor, f*(x) = E[Y | X = x].
Elc] = [ p( /y (F() — y)? Py | X = x)dydx

— [ px) [ (LY X =]~ y)?ply | X = x)dycx
X N%

_ / p(X) VarlY | X = x]
X

> This is irreducible error.



Error for any predictor

@Le}l

Now let's consider the expected square error for a suboptimal predictor, f(x).

E[C | X] = [(f(x V)2 yxzx} :IE{(@)—E[Y\Xzﬂ+@\X:x]—Y)2 \X:x}

i,
O~ A
=K [(f(x) —E[Y | X = x])2 +2(f(x) — E[Y | X=Xx])(E[Y | X=Xx] —Y)
o 200b

F(E[Y | X = x] - V)? ]X:x}

57/



Error for any predictor

Now let's consider the expected square error for a suboptimal predictor, f(x).

E[C | X] = [(f(x V)2 ]sz} :IE[(f(x)—IE[Y\X:x]+IE[Y\X=x]—Y)2 \X:x}

—E [(f(x) —E[Y | X = x])% + 2(f(x) — E[Y | X = x])(E[Y [ X = x] — Y))

F(E[Y | X = x] - V)? ]X:x}



Error (cont'd), middle term

o b

E[(f(x) — E[Y | X =x])(E[Y | X = x| — Y)J| 5( = X]
‘ J —

= () —ELY | X =) 2 [(E[Y [ X =% =) [X =x]
= (f(x) —E[Y | X = x]) (E[Y | X = x] — E[Y|X = X])
= (f(x) —E[Y | X = x]) 0
~0



Error for any predictor

LA [ pl) 1R
WE
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E[C] = E[E[C[X=x] ~ b

:]E:IE{(f(x)—E[Y|X=x])2+(]E[Y|X:x]—Y)2 \xzxﬂ

=B |(f(X) = E[Y | X =x])>| + E|(B[Y | X =%~ ¥)* |X = x]
=E[(fX) — F*(X)?| + E|(f(X)- V)]



Error for any predictor

E[C] = E[E[C | X = x]]
—E|E {(f(x)—E[Y|X=x])2+(]E[Y|X:x]—Y)2 \xzxﬂ

=B |(f(X) = E[Y | X =x])>| + E|(B[Y | X =%~ ¥)* |X = x]
e[t - o] | + (B[00 - ]

reducible error irreducible error



How to reduce the reducible error?

> We want to make the error between the f that we learn and the optimal f*
smaller.

> Let's assumed the hypothesis space we're looking in, F, is the space of linear
functions.

> Sources of reducible error

1. Limited hypothesis space. We assumed linear functions, but maybe f* is non
linear.

2. Insufficient optimization. We might have used gradient descent, but did't fully
optimize f - stopped too early?

3. Limited data. Not enough samples to identify a good f.



How to reduce the reducible error?

1. Limited hypothesis space. We assumed linear functions, but maybe f* is non
linear.

> Solution: make the hypothesis space bigger (e.g. polynomials?)

2. Insufficient optimization. We might have used gradient descent, but did't fully
optimize f - stopped too early?

> Solution: set step size and number of epochs more carefully to ensure you're at a
stationary point.

3. Limited data. Not enough samples to identify a good f.

> Solution: gather more data.



How to reduce the irreducible error?
[ Vet Y]

It's irreducible...

>
> It's the variance of Y given X: Var(Y | X = x).

> |mproving the learned function cannot change the inherent variance in Y.
>

BUT: what is the source of variance in Y given x?



How to reduce the irreducible error?

It's irreducible...

>
> It's the variance of Y given X: Var(Y | X = x).

> |mproving the learned function cannot change the inherent variance in Y.
> BUT: what is the source of variance in Y given x?

> partial observability
> stochasticity in the system



Linear Predictors Livans Bgﬁmmw
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