CMPUT 267 Basics of Machine Learning

Prediction and Optimal Predictors Linear Regression

February 29, 2024

CMPUT 267 Basics of Machine Learning

- ▷ Participation and Reading Exercises for MLE and MAP
 - ▷ on eClass tonight along with recorded lecture covering MLE and MAP.
 - Exercises will be up for a week.
- ▷ Assignment 2a and 2b : deadlines pushed. Check eClass and course website.

Outline

- 1. Recap
- 2. Optimal Prediction for Classification Example
- 3. Irreducible vs. Reducible Error
- 4. MLE Formulation for Linear Regression

- ▷ Supervised learning problem: Learn a predictor $f : X \to Y$ from a dataset $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$.
 - \triangleright \mathcal{X} is the set of **observations** and \mathcal{Y} is the set of **targets**.
- ▷ **Classification** problems have discrete targets.
- **Regression** problems have continuous targets (order matters).

Recap: Optimal Prediction

- Suppose we know the true joint distribution $p(\mathbf{x}, \mathbf{y})$ and we want to use it to make predictions in a classification problem.
- ▶ The **optimal classification predictor** makes the best use of this fucntion.
- ▷ As with the optimal estimator, we measure the quality of a predictor f(x) by its exptected cost E[C].
- ▷ The optimal predictor **minimizes** $\mathbb{E}[C]$.

$$\mathbb{E}[C] = \int_{\mathcal{X}} \sum_{y \in \mathcal{Y}} \operatorname{cost} \left(f(\mathbf{x}), y \right) p(\mathbf{x}, y) d\mathbf{x},$$

where $cost(\hat{y}, y)$ is the cost of predicting \hat{y} when the true value is y, and $C = cost(f(\mathbf{x}), y)$ is a random variable.

Recap: Optimal Classification Prediction

▶ Bayes risk classifier:

$$f^* = \operatorname*{arg\,min}_{f\in\mathcal{F}} \int_{\mathcal{X}} p(\mathbf{x}) \mathbb{E}[C \mid \mathbf{X} = \mathbf{x}] d\mathbf{x}$$

$$f^*(\mathbf{x}) = \argmin_{f \in \mathcal{F}} \mathbb{E}[C \mid \mathbf{X} = \mathbf{x}] = \arg\min_{\hat{y} \in \mathcal{Y}} \sum_{y \in \mathcal{Y}} \operatorname{cost}(\hat{y}, y) p(y \mid \mathbf{x})$$

$$D - 1 \text{ cost function:}$$

 $f^* = \underset{\hat{y} \in \mathcal{Y}}{\operatorname{arg\,max}} p(y \mid \mathbf{x})$

 $wall d p(y \mid \mathbf{x})$

CMPUT 267 Basics of Machine Learning 7

Recap: Optimal Regression Prediction

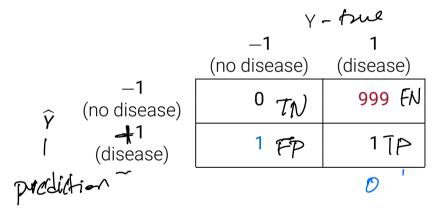
- ▷ Most common cost functions:
 - 1. squared error: $cost(\hat{y}, y) = (\hat{y} y)^2$
 - 2. absolute error: $cost(\hat{y}, y) = |\hat{y} y|$
- Squared error function penalizes large error values more than absolute error function.
- ▷ Optimal prediction for squared error:

$$f^{*}(\mathbf{x}) = \mathbb{E}[Y \mid \mathbf{X} = \mathbf{x}]$$

For absolute error $\int_{0}^{*} (\mathcal{H}) = Median(Y|\mathcal{H})$

Example: Classification

- ▷ A medical example where "0 1" cost, but with cost differing by type of wrong answer.
- ▷ y = -1: no disease; y = 1: disease.
- if disease predicted, further tests; no tests if no disease predicted.
- false positive: leads to unnecessary test.
- false negative: leads to untreated disease (and law suit later).



Example

y ∈ {−1,1}
Given **x**, let:

р

$$(y = 1 | \mathbf{x}) = p_1 \quad p(y = -1 | \mathbf{x}) = p_0 \quad (p_0 = 1 - p_1)$$

$$f^*(\mathbf{x}) = \arg\min \mathbb{E}[C | \mathbf{X} = \mathbf{x}]$$

$$f^{*}(\mathbf{x}) = \operatorname{arg} \min \mathbb{E}[C | \mathbf{X} = \mathbf{x}]$$

CMPUT 267 Basics of Machine Learning 11

Ţ

Error in prediction

- ▷ Optimal prediction doesn't mean error =0.
- What is the quality of our predictor? It may be optimal or suboptimal. Let's look at the expected squared error.
- ▷ First let's consider the optimal predictor, $f^*(\mathbf{x}) = \mathbb{E}[Y | \mathbf{X} = \mathbf{x}]$.

$$\mathbb{E}[C] = \int_{\mathcal{X}} p(\mathbf{x}) \iint_{\mathcal{Y}} (f^*(\mathbf{x}) - y)^2 p(y \mid \mathbf{X} = \mathbf{x}) dy dx$$
$$= \int_{\mathcal{X}} p(\mathbf{x}) \iint_{\mathcal{Y}} (\mathbb{E}[Y \mid \mathbf{X} = \mathbf{x}] - y)^2 p(y \mid \mathbf{X} = \mathbf{x}) dy dx$$

Error in prediction

- ▷ Optimal prediction doesn't mean error =0.
- What is the quality of our predictor? It may be optimal or suboptimal. Let's look at the expected squared error.
- ▷ First let's consider the optimal predictor, $f^*(\mathbf{x}) = \mathbb{E}[Y | \mathbf{X} = \mathbf{x}]$.

$$\mathbb{E}[C] = \int_{\mathcal{X}} p(\mathbf{x}) \int_{\mathcal{Y}} (f^*(\mathbf{x}) - y)^2 p(y \mid \mathbf{X} = \mathbf{x}) dy dx$$
$$= \int_{\mathcal{X}} p(\mathbf{x}) \int_{\mathcal{Y}} (\mathbb{E}[Y \mid \mathbf{X} = \mathbf{x}] - y)^2 p(y \mid \mathbf{X} = \mathbf{x}) dy dx$$

$$= \int_{\mathcal{X}} p(\mathbf{x}) \operatorname{Var}[Y \mid \mathbf{X} = \mathbf{x}]$$

▷ This is **irreducible error**.

$$(afb)^2$$

Now let's consider the expected square error for a suboptimal predictor, $f(\mathbf{x})$.

$$\mathbb{E}[C \mid X] = \mathbb{E}\left[(f(\mathbf{x}) - Y)^2 \mid X = \mathbf{x}\right] = \mathbb{E}\left[(\underbrace{f(\mathbf{x}) - \mathbb{E}[Y \mid \mathbf{X} = \mathbf{x}]}_{\mathcal{O}} + \underbrace{\mathbb{E}[Y \mid X = \mathbf{x}] - Y}_{\mathcal{O}}\right)^2 \mid \mathbf{X} = \mathbf{x}\right]$$
$$= \mathbb{E}\left[(f(\mathbf{x}) - \mathbb{E}[Y \mid \mathbf{X} = \mathbf{x}])^2 + 2(f(\mathbf{x}) - \mathbb{E}[Y \mid \mathbf{X} = \mathbf{x}])(\mathbb{E}[Y \mid \mathbf{X} = \mathbf{x}] - Y)\right]$$
$$+ (\mathbb{E}[Y \mid X = \mathbf{x}] - Y)^2 \mid \mathbf{X} = \mathbf{x}\right]$$

Now let's consider the expected square error for a suboptimal predictor, $f(\mathbf{x})$.

$$\mathbb{E}[C \mid X] = \mathbb{E}\left[\left(f(\mathbf{x}) - Y\right)^2 \mid X = \mathbf{x}\right] = \mathbb{E}\left[\left(f(\mathbf{x}) - \mathbb{E}[Y \mid \mathbf{X} = \mathbf{x}] + \mathbb{E}[Y \mid \mathbf{X} = \mathbf{x}] - Y\right)^2 \mid \mathbf{X} = \mathbf{x}\right]$$
$$= \mathbb{E}\left[\left(f(\mathbf{x}) - \mathbb{E}[Y \mid \mathbf{X} = \mathbf{x}]\right)^2 + 2\left(\overline{(f(\mathbf{x}) - \mathbb{E}[Y \mid \mathbf{X} = \mathbf{x}])(\mathbb{E}[Y \mid \mathbf{X} = \mathbf{x}] - Y)}\right)$$
$$+ \left(\mathbb{E}[Y \mid \mathbf{X} = \mathbf{x}] - Y\right)^2 \mid \mathbf{X} = \mathbf{x}\right]$$

Error (cont'd), middle term

$$\mathbb{A} \mathbb{B}$$

$$\mathbb{E}[(f(\mathbf{x}) - \mathbb{E}[Y \mid X = \mathbf{x}])(\mathbb{E}[Y \mid X = \mathbf{x}] - Y)] | \mathbf{X} = \mathbf{x}]$$

$$= (f(\mathbf{x}) - \mathbb{E}[Y \mid X = \mathbf{x}]) \mathbb{E}[(\mathbb{E}[Y \mid X = \mathbf{x}] - Y) \mid X = \mathbf{x}]$$

$$= (f(\mathbf{x}) - \mathbb{E}[Y \mid X = \mathbf{x}]) (\mathbb{E}[Y \mid X = \mathbf{x}] - \mathbb{E}[Y \mid X = \mathbf{x}])$$

$$= (f(\mathbf{x}) - \mathbb{E}[Y \mid X = \mathbf{x}]) 0$$

$$= 0$$

Error for any predictor

Error for any predictor

$$\begin{split} \mathbb{E}[C] &= \mathbb{E}[\mathbb{E}[C \mid \mathbf{X} = \mathbf{x}]] \\ &= \mathbb{E}\left[\mathbb{E}\left[(f(\mathbf{x}) - \mathbb{E}[Y \mid \mathbf{X} = \mathbf{x}])^2 + (\mathbb{E}[Y \mid \mathbf{X} = \mathbf{x}] - Y)^2 \mid \mathbf{X} = \mathbf{x}\right]\right] \\ &= \mathbb{E}\left[(f(\mathbf{X}) - \mathbb{E}[Y \mid \mathbf{X} = \mathbf{x}])^2\right] + \mathbb{E}\left[(\mathbb{E}[Y \mid \mathbf{X} = \mathbf{x}] - Y)^2 \mid \mathbf{X} = \mathbf{x}\right] \\ &= \mathbb{E}\left[(f(\mathbf{X}) - f^*(\mathbf{X}))^2\right] + \mathbb{E}\left[(f^*(\mathbf{X}) - Y)^2\right] \end{split}$$

reducible error

irreducible error

How to reduce the reducible error?

- > We want to make the error between the f that we learn and the optimal f^* smaller.
- \triangleright Let's assumed the hypothesis space we're looking in, \mathcal{F} , is the space of linear functions.
- Sources of reducible error
 - 1. Limited hypothesis space. We assumed linear functions, but maybe f^* is non linear.
 - 2. **Insufficient optimization**. We might have used gradient descent, but did't fully optimize *f* stopped too early?
 - 3. Limited data. Not enough samples to identify a good *f*.

How to reduce the reducible error?

- 1. Limited hypothesis space. We assumed linear functions, but maybe f^* is non linear.
 - ▷ Solution: make the hypothesis space bigger (e.g. polynomials?)
- 2. **Insufficient optimization**. We might have used gradient descent, but did't fully optimize *f* stopped too early?
 - Solution: set step size and number of epochs more carefully to ensure you're at a stationary point.
- 3. Limited data. Not enough samples to identify a good *f*.
 - ▷ Solution: gather more data.

How to reduce the irreducible error?

(pr) Var [Y/X=x]

▷ It's irreducible...

- ▷ It's the variance of Y given X: Var(Y | X = x).
- ▶ Improving the learned function **cannot** change the inherent variance in **Y**.
- \triangleright BUT: what is the source of variance in **Y** given **x**?

How to reduce the irreducible error?

▷ It's irreducible...

- ▷ It's the variance of Y given X: Var(Y | X = x).
- ▷ Improving the learned function **cannot** change the inherent variance in **Y**.
- \triangleright BUT: what is the source of variance in **Y** given **x**?
 - partial observability
 - stochasticity in the system

Linear Predictors Linear Regression
Setting:
$$D = \{(\vec{x}_{i}, y_{i})\}_{i=1}^{n} \times_{i} \in \mathbb{R}^{d}$$
 yier
 $f(x_{i}) = \omega_{0} + \omega_{1} \times_{i,1} + \omega_{2} \times_{i,2} + \cdots + \omega_{d} \times_{i,d}$
 $f(x_{i}) = \frac{d}{2} \omega_{j} \times_{i,3} \quad (\mathcal{K}_{i,0} = 1)$
 $j=0$ reductive $\overline{x} : [1, \chi_{i_{1}} \chi_{2}, \cdots, \chi_{d}]$
 $P(y|\mathbf{x}) \quad d = (\omega_{0} = 0 \quad reductive \overline{x} : [1, \chi_{i_{1}} \chi_{2}, \cdots, \chi_{d}]$
 $P(y|\mathbf{x}) = N(\chi_{10}, \nabla^{2})$
 $f(y_{i}) = \sum_{j=0}^{d} \omega_{j} \times_{i,j} + \varepsilon_{i} \quad \varepsilon_{i} \sim N(D_{j} \nabla^{2})$
 $\sqrt{y_{i}} = \sum_{j=0}^{d} \omega_{j} \times_{i,j} + \varepsilon_{i} \quad \varepsilon_{i} \sim N(D_{j} \nabla^{2})$
 $\sqrt{\chi_{1}} = \sum_{j=0}^{d} \omega_{j} \times_{i,j} + \varepsilon_{i} \quad \varepsilon_{i} \sim N(D_{j} \nabla^{2})$
 $\sqrt{\chi_{1}} = \sum_{j=0}^{d} \omega_{j} \times_{i,j} + \varepsilon_{i} \quad \varepsilon_{i} \sim N(D_{j} \nabla^{2})$
 $\sqrt{\chi_{1}} = \sum_{j=0}^{d} \omega_{j} \times_{i,j} + \varepsilon_{i} \quad \varepsilon_{i} \sim N(D_{j} \nabla^{2})$

Hypothesis space. $F = \frac{1}{2} p(\cdot | \kappa) = \mathcal{N}(\iota J \kappa, \sigma^2) \left[\iota J \kappa^2 \right]$ Goal: find parameters voj, 020,...,d To ETRatt that is optimal in F avgnin Z-ln p(yilxi,to) WEIR¹⁴ i=1 MLE

Linear MLE Vignosion avgnin - lup[]] weredt 10 arguat Pi WETRati ω Clu il w = argnin 1 (2-ln $\hat{\pi}_{i}$, $\hat{\omega}$ Yi D(WETR $\chi = (\chi_i - \chi_i \omega)^2$ - avgnin Th Z WETRati argunin WETECHI t Z Z filliwryi) argnin wERdHI -Ordinay Least Squares

Find
$$W_{MLE}$$
 $\sum c(w) = 0$ $\begin{pmatrix} \frac{\partial}{\partial w} c(w) \\ \frac{\partial}{\partial w_0} \\ \vdots \\ \frac{\partial}{\partial w_1} c(w) = \frac{1}{n} \sum \frac{\partial c_{U(w)}}{\partial w_1} \\ \frac{\partial}{\partial w_2} \\ \frac{\partial}{\partial w_1} \\ \frac{\partial}{\partial w_2} \\ \frac{\partial}{\partial w_1} \\ \frac{\partial}{\partial w_2} \\ \frac{\partial}{\partial w_1} \\ \frac{\partial}{\partial w_2} \\ \frac{\partial}{\partial w_2} \\ \frac{\partial}{\partial w_2} \\ \frac{\partial}{\partial w_1} \\ \frac{\partial}{\partial w_2} \\ \frac{\partial}{\partial w_2} \\ \frac{\partial}{\partial w_1} \\ \frac{\partial}{\partial w_2} \\ \frac{\partial}{\partial w_2} \\ \frac{\partial}{\partial w_1} \\ \frac{\partial}{\partial w_2} \\ \frac{\partial}{\partial w_2} \\ \frac{\partial}{\partial w_1} \\ \frac{\partial}{\partial w_2} \\ \frac{\partial}{\partial w_2} \\ \frac{\partial}{\partial w_1} \\ \frac{\partial}{\partial w_2} \\ \frac{\partial}{\partial w_1} \\ \frac{\partial}{\partial w_2} \\ \frac{\partial}{\partial w_1} \\ \frac{\partial}{\partial w_2} \\ \frac{\partial}{\partial w_2} \\ \frac{\partial}{\partial w_1} \\ \frac{\partial}{\partial w_2} \\ \frac{\partial}{\partial w_1} \\ \frac{\partial}{\partial w_2} \\ \frac{\partial}{\partial w_2} \\ \frac{\partial}{\partial w_1} \\ \frac{\partial}{\partial w_2} \\ \frac{\partial}{\partial w_1} \\ \frac{\partial}{\partial w_2} \\ \frac{\partial}{\partial w_1} \\ \frac{\partial}{\partial w_2} \\ \frac{\partial}{\partial w_2} \\ \frac{\partial}{\partial w_1} \\ \frac{\partial}{\partial w_1} \\ \frac{\partial}{\partial w_2} \\ \frac{\partial}{\partial w_1} \\ \frac{\partial}{\partial w_2} \\ \frac{\partial}{\partial w_1} \\ \frac{\partial}{\partial w_1} \\ \frac{\partial}{\partial w_2} \\ \frac{\partial}{\partial w_1} \\ \frac{\partial}{\partial w_$

1 Z (k: W-yi) Xio -0 In Z (x. Tuo-yi) Xi, -0 -> Aw=b + Z (ui w-yi) Xid =0 A= ナシャッパ b= ナ ジョア: yi O(ud²) matrix inversion O(d³) $O(nd^2 + d^3)$

ial Solution SLD. 1. Initialize \vec{w}_0 \vec{w}_t $w_{0,j} = N(0,1)$ Numerical Solution 2 sample minibatch (shuffle) bibatchsize 3. $\vec{u}_{t} = \vec{u}_{t} - \eta_{t} \vec{b} \hat{c}_{t} (\vec{u}_{t} - \eta_{t}) \kappa \hat{c}_{t}$ Mt (vector) numerical Jeji = Je-1,1 + Beni issues at las Mti g0 =0 WMLE O(Kbd) (for Kiteration of SUD)

CMPUT 267 Basics of Machine Learning 28

 $w_t - u_t c'(w_t)$ $1/1 \sum_{i=1}^{N} (i/w_t)$ W-tt ($\frac{1}{2} \frac{2}{(i(w))}$ bun