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Announcements

⇤ Participation and Reading Exercises for MLE and MAP
⇤ on eClass tonight along with recorded lecture covering MLE and MAP.
⇤ Exercises will be up for a week.

⇤ Assignment �a and �b : deadlines pushed. Check eClass and course website.
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�. Optimal Prediction for Classi�cation - Example

�. Irreducible vs. Reducible Error

�. MLE Formulation for Linear Regression
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Recap

⇤ Supervised learning problem: Learn a predictor f : X ! Y from a dataset
D = {(xi, yi)}ni=�.

⇤ X is the set of observations and Y is the set of targets.

⇤ Classi�cation problems have discrete targets.

⇤ Regression problems have continuous targets (order matters).
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Recap: Optimal Prediction

⇤ Suppose we know the true joint distribution p(x, y) and we want to use it to
make predictions in a classi�cation problem.

⇤ The optimal classi�cation predictor makes the best use of this fucntion.

⇤ As with the optimal estimator, we measure the quality of a predictor f(x) by its
exptected cost E[C].

⇤ The optimal predictor minimizes E[C].

E[C] =
Z

X

X

y2Y
cost (f(x), y) p(x, y)dx,

where cost(ŷ, y) is the cost of predicting ŷ when the true value is y, and
C = cost (f(x), y) is a random variable.
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Recap: Optimal Classi�cation Prediction

⇤ Bayes risk classi�er:

f⇤ = argmin
f2F

Z

X
p(x)E[C | X = x]dx

f⇤(x) = argmin
f2F

E[C | X = x] = argmin
ŷ2Y

X

y2Y
cost(ŷ, y)p(y | x)

⇤ �� � cost function:
f⇤ = argmax

ŷ2Y
p(y | x)
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Recap: Optimal Regression Prediction

⇤ Most common cost functions:
�. squared error: cost(ŷ, y) = (ŷ � y)�

�. absolute error: cost(ŷ, y) = |ŷ � y|

⇤ Squared error function penalizes large error values more than absolute error
function.

⇤ Optimal prediction for squared error:

f⇤(x) = E[Y | X = x]
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Example: Classi�cation

⇤ A medical example where “�� �” cost, but with cost differing by type of wrong
answer.

⇤ y = ��: no disease; y = �: disease.
⇤ if disease predicted, further tests; no tests if no

disease predicted.
⇤ false positive: leads to unnecessary test.
⇤ false negative: leads to untreated disease (and

law suit later).

Y
�� �

(no disease) (disease)

bY

�� � ���(no disease)
�� � �(disease)
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Example

⇤ y 2 {��, �}
⇤ Given x, let:

p(y = � | x) = p� p(y = �� | x) = p� (p� = �� p�)

f⇤(x) = argmin
f2F

E[C | X = x]
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Error in prediction
⇤ Optimal prediction doesn’t mean error =�.
⇤ What is the quality of our predictor? It may be optimal or suboptimal. Let’s look

at the expected squared error.
⇤ First let’s consider the optimal predictor, f⇤(x) = E[Y | X = x].

E[C] =
Z

X
p(x)

Z

Y
(f⇤(x)� y)� p(y | X = x)dydx

=

Z

X
p(x)

Z

Y
(E[Y | X = x]� y)� p(y | X = x)dydx

=

Z

X
p(x) Var[Y | X = x]

⇤ This is irreducible error.
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Error for any predictor

Now let’s consider the expected square error for a suboptimal predictor, f(x).

E[C | X] = E
h
(f(x)� Y)�

��X = x
i
= E

h
(f(x)�E[Y | X = x] + E[Y | X = x]� Y)�

��X = x
i

= E
h
(f(x)� E[Y | X = x])� + � (f(x)� E[Y | X = x])(E[Y | X = x]� Y)

+ (E[Y | X = x]� Y)�
��X = x

i
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Error for any predictor

Now let’s consider the expected square error for a suboptimal predictor, f(x).
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Error (cont’d), middle term

E[(f(x)� E[Y | X = x])(E[Y | X = x]� Y) | X = x]

= (f(x)� E[Y | X = x])E
⇥
(E[Y | X = x]� Y)

��X = x
⇤

= (f(x)� E[Y | X = x]) (E[Y | X = x]� E[Y|X = x])

= (f(x)� E[Y | X = x])�

= �
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Error for any predictor

E[C] = E[E[C | X = x]]

= E
h
E
h
(f(x)� E[Y | X = x])� + (E[Y | X = x]� Y)�

��X = x
ii

= E
h
(f(X)� E[Y | X = x])�

i
+ E

h
(E[Y | X = x]� Y)�

��X = x
i

= E
h
(f(X)� f⇤(X))�

i
+ E

h
(f⇤(X)� Y)�

i

reducible error irreducible error
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Error for any predictor

E[C] = E[E[C | X = x]]

= E
h
E
h
(f(x)� E[Y | X = x])� + (E[Y | X = x]� Y)�

��X = x
ii

= E
h
(f(X)� E[Y | X = x])�

i
+ E

h
(E[Y | X = x]� Y)�

��X = x
i

= E
h
(f(X)� f⇤(X))�

i
+ E

h
(f⇤(X)� Y)�

i

reducible error irreducible error
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How to reduce the reducible error?

⇤ We want to make the error between the f that we learn and the optimal f⇤
smaller.

⇤ Let’s assumed the hypothesis space we’re looking in, F , is the space of linear
functions.

⇤ Sources of reducible error
�. Limited hypothesis space. We assumed linear functions, but maybe f⇤ is non

linear.
�. Insuf�cient optimization. We might have used gradient descent, but did’t fully

optimize f - stopped too early?
�. Limited data. Not enough samples to identify a good f .
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How to reduce the reducible error?

�. Limited hypothesis space. We assumed linear functions, but maybe f⇤ is non
linear.

⇤ Solution: make the hypothesis space bigger (e.g. polynomials?)

�. Insuf�cient optimization. We might have used gradient descent, but did’t fully
optimize f - stopped too early?

⇤ Solution: set step size and number of epochs more carefully to ensure you’re at a
stationary point.

�. Limited data. Not enough samples to identify a good f .
⇤ Solution: gather more data.
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How to reduce the irreducible error?

⇤ It’s irreducible...
⇤ It’s the variance of Y given X: Var(Y | X = x).
⇤ Improving the learned function cannot change the inherent variance in Y.
⇤ BUT: what is the source of variance in Y given x?

⇤ partial observability
⇤ stochasticity in the system
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Linear Predictors
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