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Announcements

> Keep track of assignments!



Outline

1. Recap
2. Solving Linear Regression

3. Polynomial Regression



Recap: Linear Regression

A linear predictor has the form

d
f(X) = Wo + WXy + ...+ WaXg = > WjX; = W'X
=0

> Probabilistic approach:
1. Assume iid Gaussian noise: Y ~ N (W'x, 02). (y; = Z,d:o WiXij + €i)
2. Use MLE to estimate model from the resulting parametric family

F=A{p(- | x) = N(W'x,0?) | w e R""}
3. Use the optimal predictor for the estimated model:

f*(x) =E[Y | X =x] =w'x



Solving Linear Regression

> We derived the solution in analytical form
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> But this can be costly, 0(nd? + d3).

> Numerical solution. Stochastic Gradient Descent
> O(kbd) for k iterations of SGD.



Linear Regression for Nonlinear Predictors

> What if f* is not linear?

F(X) = Wo 4 WiX 4+ WoX? + ... + wpxP.

> Casel.x € R . Learnf(x) = Wo + WqX + Wox? + ... + wpxP p-th degree polynomial
Create a new function that is a transformation of the polynomial.
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Polynomial Regression

f(X) = Wo + WiX 4+ WoX? + - - - + wpxP

(polynomial of degree p)
> CaseTl.xeR
> Learn: f(x) = wo + WX + WaXx? + - - + wpxP.

1.

Feature mapping: a new function that is a transformation of the polynomial
d(X) = (Po(X), P1(X), P2(X), ..., dp(X)), i(X) = x (basis functions)

Create a transformed dataset D = {(¢(x;), yi)}.,

Apply linear regression on ¢(x). Now, we want to learn

f(x) = ij:o WX/ = ijzo widj(X) = WTp(x), w € RPH.

To predict on Xnew, ¥ = f(Xnew) = 327 o Wixhew

Xnew —+ O(Xnew) = (1,Xnew,X%eW, e 7Xf’1)eW) Y = d(Xnew)TW



Polynomial Regression, d > 1

ik
> Case2:x € R?,p =2
> Learn:

f(X) = Wo + WaXpy + WoXp) + WaX[X[z) + w4xﬁ] + W5X[22].
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1. Feature mapping
2. Create a transformed dataset D = {(¢(X;), ¥i) }_,
3. Apply linear regression on ¢(x). Now, we want to learn

f(X) = 327 o Wigj(X) =WTg(x),

we R

P(X) =

[ ¢o(x) =1.0]
$1(X) = Xq
P2(X) = X2

P3(X) = X1X2
da(X) = X5

| p5(X) = x5 |




Polynomial Regression, d > 1

> Case:x € R9.p>1

1. Feature mapping
2. Create a transformed dataset D = {(¢(%;), i)}, P(X) =
3. Apply linear regression on ¢(x). Now, we want to learn

(X) = > _jico Wjdj(X) = WTg(x), w € R™, d+p
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[ ¢o(x)=1.0
P1(X) = X
P2(X) = X2
¢d(x)‘ = Xq

Pd11(X) = X1X2
Pd+2(X) = X1X3

i ¢m(x):XZ i



How to pick the model, (p)?

> Alarger p means that we have a more general function class
> (Assumex € R(d =1).)

p
Fp={f RoR|[f(x)=) xw;, wecR""}
j=0

> Fp © Fpa

> Larger p is not necessarily better

> Computationally more expensive (more parameters to estimate)
> Overfitting

N



How to pick the model, (p)?

(LN

|l — p=1 mse=8.41

8
g4 — p=1 mse=35.08 — p=2 mse = 1.87
~—— p=2 mse=223 —— p=5 mse=10.3
— p=5 mse= 0.00 61 .

> Here, polynomial regressionwithp =5 = But with more data (new data, red
has the best error. points) p = 2 has lower error.



How to compare models?

> Parametric learning
> There is an underlying distribution that generates the data points ; “true parameter”
w : this is the quantity we want to estimate.
> MLE estimatoerLE: this is a random variable, a function of the observed dataset.
> for a specific instance, or realization of the dataset, (D, an iid sample), we estimate
with W\LE.

> So how do we compare betvveen/V\\rMLE for two different models?



Generalization error

> For learning the predictor, we want to minimize the true cost:
E[C) = Elcost(f(X). V)] = | p(x.y) cost(f(x).) dxdly
XxXY
> This is the generalization error.

> But since we don't have access to p(x, y), we instead do an empirical minimization,
on the dataset D = {(x;,y;)}i_,, we do have:

n

c(w) = 3 (F00) — i)

i=1

> This is the empirical error, which is a proxy for the true cost.

> Since this is computed on the dataset we learn on, this is also called training error



How to compare models

> Can we use the empirical error to compare models?

> We might want to use empirical error to compare models, but this error only tells
us how good a model performs on that given dataset. For a new set of data we
observe, they may not have similar performance.

> This is seen in the previous example on slide ??. We see that while the polynomial
function with p = 5 has the best error on the given dataset, the polynomial withp = 2
has better error when new data is added.

> SO we can't compare using empirical error because a low empirical error may
mean overfitting, if the generalization error is also not low.

> Qverfitting occurs when we select a model that has good empirical error but poor
generalization error.



How to avoid overfitting?

> How to detect overfitting?
> generalization error is high

> How do we estimate generalization error?

> We can use empirical error to estimate GE, but on a different set of iid samples
(not the dataset we used to train the model).

> |f we have a set of iid samples, this is an unbiased estimator.

> Create a new set of iid samples by splitting the original dataset : keep a hold out
dataset
> The observed dataset is split into

> the non-held-out set - this is the training set, and
> the held-out set - this is the testing set.



Estimating Generalization error
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